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Figure 1. MagTouch identifies the contact finger among index, middle, and ring fingers using an embedded magnetometer in a smartwatch and a
permanent magnet ring. (a) A user can invoke three different functions on a single button by simply switching between fingers. Based on the touch
location and the magnetic field vector, MagTouch can identify the contact finger when a user moves the hand to switch between fingers (b,c) and when
the user only switches the contact fingers without moving the hand (d,e).

ABSTRACT
Completing tasks on smartwatches often requires multiple
gestures due to the small size of the touchscreens and the
lack of sufficient number of touch controls that are easily
accessible with a finger. We propose to increase the number
of functions that can be triggered with the touch gesture by
enabling a smartwatch to identify which finger is being used.
We developed MagTouch, a method that uses a magnetometer
embedded in an off-the-shelf smartwatch. It measures the
magnetic field of a magnet fixed to a ring worn on the middle
finger. By combining the measured magnetic field and the
touch location on the screen, MagTouch recognizes which
finger is being used. The tests demonstrated that MagTouch
can differentiate among the three fingers used to make contacts
at a success rate of 95.03%.
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INTRODUCTION
Smartwatches allow users to access information and notifica-
tions at a glance[40]. They are significantly faster to access
than smartphones [3] and allow for microinteractions, which
takes less than few seconds [2] and do not slow down sec-
ondary tasks in mobile scenarios [37]. However, efficient
input on smartwatches is still challenging, especially with
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touch buttons [40]. As the number of graphical user interface
(GUI) controls on the screen is limited because of its size,
completing a simple task often requires a series of swipe and
tap gestures that may extend task completion times, result in
fatigue, and hinder the completion of secondary tasks [37].
Speech input is supported by many smartwatches and can be
helpful with complex commands, however, it may not be prac-
tical in some public setting due to the social acceptability [41]
and noise concerns.

We believe that expanding the touch input vocabulary without
increasing the density of touch controls on smartwatches will
assist users to complete tasks more rapidly on their smart-
watches and focus on their primary tasks. One approach
to achieving this objective is by identifying the fingers and,
thereby, diversifying input operations, as in practice, peo-
ple use each finger differently. For example, when using a
computer mouse, index and middle finger are dedicated to
different buttons, which leads to various functions being acti-
vated. Similarly in a smartwatch, tapping on the same button
may open an item (index finger), open a context menu (middle
finger), or trigger an alternative function (Figure 1a). Fin-
ger identification has produced numerous beneficial results
across many digital devices, from tabletops [5, 7, 22, 35] to
mobile phones [4, 12, 17], and smartwatches [15, 18]. This is
achieved using computer-vision based techniques [13, 44, 47,
50], finger-worn sensors and actuators [18, 31], or using other
body-worn sensors such as electromyography electrodes [7].
Although the abovementioned studies have demonstrated the
potential benefits of employing finger identification methods,
however, these methods are not feasible for smartwatches [5,
30, 50]. Requirements such as active sensing/actuation el-
ements attached to fingers [31], can interfere with people’s



daily activities when using their hands and make them hesitant
of wearing such devices because of aesthetics [32].

Our objective was to create a practical and robust method to
enable finger-identification on a smartwatch with minimal ef-
fect on the wearer’s appearance or hand-based activities. This
paper presents MagTouch, a method that uses a magnetometer
embedded in a smartwatch and a magnet ring to identify the
three operating fingers (See Figure 1). It uses both magne-
tometer data and touch locations for identification. This is not
the first work to use a magnet in smartwatch interactions as re-
searchers have previously investigated the use of a magnet on
a fingertip or fingernail [9, 20, 33]. We focused on developing
a more practical solution that causes minimal inconvenience
for everyday wear and decided to use a ring for that purpose.
Placing a magnet distant from the smartwatch creates several
challenges. Interference from ambient magnetic fields (e.g., a
geomagnetic field) increases due to the attenuation of the mag-
netic field of the magnet ring. The ambiguity in identifying the
fingers also increases because, unlike with other magnet track-
ing systems, the smartwatch uses a single magnetometer [9,
33].

In this paper, we describe the methods implemented to cope
with the challenges, including an algorithm that compensates
for the ambient magnetic field and the combined use of mag-
netic field and touch location. To validate this concept, we
devised a prototype with a conventional smartwatch and a ring
with a magnet. Our evaluation showed that MagTouch could
successfully identify the fingers over 95% of the trials with
different orientations and usage contexts where the ambient
magnetic field could change dynamically. This result is an
improvement of 22% over the method that uses magnetic field
measurement without dynamic calibration (77.9%) [38].

In summary, our work contributes a practical and robust finger
identification method that uses a magnet ring and a built-in
magnetometer. Furthermore, we offered the project resources
online for researchers to use finger identification in their work
(https://github.com/KAIST-HCIL/MagTouch).

RELATED WORK

Finger Identification Techniques
Researchers sought ways to detect the finger touching the
screen and developed interaction techniques that utilize finger
identification to enrich touch interaction.

Computer vision is the most common method of finger identi-
fication. Colley et al. [12] proposed a contact list application
where different actions were mapped to the five fingers. They
utilized a leap motion to determine which finger was interact-
ing with the smartphone. Zheng and Vogel [50] designed a
finger identifying keyboard for shortcuts. The same key could
map to a regular key input or a shortcut, depending on which
finger was used to press the key. They used a hand image
and a $1 Recognizer to identify which finger was pressing
which key. Sridhar et al. [44] proposed a music player that
could be controlled with the thumb and the index finger. When
a user touched the back of a hand with her index finger the
volume increases and touching it with the thumb the volume

decreases. Depth sensor on a user’s arm distinguished which
fingers touched the back of the user’s hand.

Researchers have developed other approaches that do not use
a camera. Dualkey [18] used a finger-worn optical sensor
to identify fingers (i.e. sensor-worn finger vs. naive finger)
and showed that it could increase typing speed on a smart-
watch by mapping two characters to a single key. Gupta et
al. [17] demonstrated using the same sensor that having two
touch modes could enable seamless application switching on
a smartphone. Benko et al. [7] used electromyography signals
measured from the forearm and demonstrated the use of finger
identification by presenting a painting application that allowed
a user to draw with different colors with different fingers. Gil
et al. [15] developed TriTap that uses a raw capacitance image
obtained from a touchscreen to distinguish between thumb,
index, and middle fingers. Instead of using finger identifica-
tion itself, researchers also explored more sophisticated uses
such as a multi-function touch buttons [42] and finger-specific
chord gestures [5, 46].

While several finger identification technologies exist, a practi-
cal technology for a smartwatch is still required. Computer-
vision based technologies [12, 13, 16, 29, 30, 35, 44, 47, 50]
are difficult to use for smartwatches because of the viewing
angle of a camera. A camera and a hand should be distanced
and this limitation is critical for designing a wearable device.
Finger-worn sensors [17, 18, 31] and arm-worn sensors [7]
can be cumbersome for daily activities, and fingerprints [22,
45] are unavailable for smartwatches. TriTap [15] can identify
fingers without additional sensors; however, a user needs to
exaggerate her posture to achieve high accuracy.

Using Magnetic Field Sensing for Interaction
Many studies used magnets to interact with mobile and wear-
able devices as they do not require any power sources to gen-
erate a magnetic field and are therefore, comfortably mobile.

One of the most common locations for magnet placement
is the fingertip [9, 10, 19, 20, 33]. By using a dual-axis
magnetic sensor [20] or using multiple magnetic sensors [9,
10, 19, 33] researchers demonstrated that the magnets attached
to the fingertip can enable in-air gestures [20, 33] and 3D
input [9, 10] on mobiles. Chen et al. showed that using
electromagnets that oscillate at certain frequencies can enable
tracking of multiple magnets [10] and eliminates the effect of
a geomagnetic field.

Some systems used a magnet ring. With Nenya [1], users could
control a circular UI by rotating a ring with a magnet worn on
a finger. Ketabdar et al. [24] used an embedded magnetic field
sensor to enable around-device gestures made with a finger
wearing magnet ring, for a smartwatch. While Cheung and
Girouard [11] also used a magnet ring but the ring was used
while held in hand as a tangible interface, instead of being
worn.

Researchers also investigated the use of magnets for enriching
touch interaction. GaussBits [26] recognized an object on a
screen with a magnetic sensor grid and showed visual infor-
mation related to the object. A user could change the input
modes of a smartphone using MagNail [23] by attaching a
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magnet to a user’s nail. Ates et al. [4] attached a magnet to a
fingertip and used the polarity of the magnetic field to expand
touch gestures. TRing [49] is a technology that estimates
orientation and the position of an inertial measurement unit
(IMU) sensor relative to a magnet.

While there was no study that investigated the use of a finger-
worn magnet ring for enriching touch interaction, Park et
al. [38] reported preliminary study results on using a magnet
ring for finger identification with early guidelines for design-
ing a magnet ring. As it was an early investigation of the
method, we advanced the objective by improving the algo-
rithm to be less sensitive to magnetic fields in the environment
and evaluated its performance characteristics in practical set-
tings.

Summary
Limited input vocabulary has been a well-known problem in
the field of HCI, and many methods have been developed to
cope with it. While these methods demonstrate significant
improvements, most techniques are difficult to implement in
everyday devices due to wearability challenges [7, 9, 10, 18,
19, 20, 33] or the difficulties of employing the technology for
smartwatches [22, 45]. This paper presents a practical solution
by using a magnet ring and an off-the-shelf smartwatch. We
present the challenges coming from the use of the ring and
their solutions.

MAGTOUCH: FINGER IDENTIFICATION USING MAGNET
RING
When a hand wearing a magnet ring touches a smartwatch,
the magnetic field and the touch location are determined by
the contact finger, as illustrated in Figure 1. It shows a user
wearing a smartwatch on the left hand and a magnet ring
on the middle finger of the right hand touching the screen.
The positions of each fingertip relative to the center of the
hand do not change when touching a surface. Therefore, it is
possible to identify the touching finger from the touch location
and the position of the center of the hand. For example, if
the touch point is at the left side of the right hand, then the
contact was made with the index finger. We attached a magnet
to a hand to get information about the hand’s location using
the magnetometer. Figure 1b-c illustrates that the relative
position of the magnet ring shifts when a user touches the
smartwatch with a different finger. This leads to changes in
the magnetic field vector at the smartwatch’s magnetometer.
Alone, magnetic field data is not sufficient for our purposes.
Magnetic field data can be replicated by different contact
fingers, as Figure 1d-e, unless the touching hand moves. For
such cases, touch location data is used to identify the fingers
accurately. Figure 2 shows ambiguity when only the magnetic
field data is used.

There are many possible ways to attach a magnet to a hand. At-
taching a magnet to a fingertip and wearing a magnet ring were
the most popular approaches. We selected the ring because
its shape is suitable for everyday activity. It is mechanically
challenging to fix a magnet to a curvilinear surface when we
take account daily activities such as washing hands and typing

Figure 2. Magnetic field data when touching various locations of the
smartwatch’s touchscreen. Magnetic field can be similar even if a touch-
ing finger is different. Touch location data is necessary for such cases.

keyboards. Furthermore, rigid object attached directly on the
skin might cause irritation and discomfort [27].

Rings are usually worn near the metacarpophalangeal joint of
a finger. Transferring a fingertip-magnet to a ring poses a chal-
lenge related to the ambient magnetic field. MagTouch cannot
avoid measuring the ambient magnetic field, even though it
should only measure the magnetic field from a magnet ring.
The ambient magnetic field can be considered noise and the
noise becomes more significant when a magnet is on a ring
rather than a fingertip. As the distance between the magnet
and the smartwatch (r) increases, the magnetic field of the
magnet decreases by the cube of the distance, and the relative
portion of the ambient magnetic field (Ba) increases. This
relationship can be described as using the following equation:

Bm =
µ0

4π

[
3r̂(m · r̂)−m

r3

]
+Ba (1)

Bm refers to the magnetic field vector at a point. m is magnetic
moment of a magnet. r̂ denotes the direction of the point from
the magnet. To compensate for magnetic field degradation over
distance substantially stronger magnet is needed. However, as
a wearable solution it is impractical, as a stronger magnet is
usually larger.

A simple pilot test was conducted to compare the magnitude
of a fingertip magnet and a magnet ring relative to the am-
bient magnetic field. The test required a person to touch the
smartwatch with their middle finger. A magnet (φ6×5mm)
was fixed to nail of the middle finger and the first joint of the
middle finger. The person rotated 180° while touching a point
on the smartwatch. The magnetic field magnitude changed
when the person rotated, because the direction of the ambient
magnetic field relative to the watch was changed. If the change
is large, the portion of the ambient magnetic field is large. As
shown in Figure 3, the difference of magnetic field magni-
tudes was more significant when the magnet was far from the
smartwatch (magnet on nail vs. magnet on ring). As a magnet
moves away from the smartwatch, the ambient magnetic field
noise increased. A double sized magnet (φ7.5×9.5mm) was
tried, but the ambient magnetic field still intruded.



Figure 3. Change in the magnitude of magnetometer vector data with
the change in the ambient magnetic field. The magnetometer vector
data is a vector sum of the magnetic field of the magnet ring and the
ambient magnetic field. The reference and 6’o clock directions denotes
two opposite directions.

It is necessary to examine the physical model underlying Mag-
Touch to understand the challenges, including the ambient
magnetic field problem facing the development of a practical
system. The magnetic field measured by the internal magne-
tometer of the smartwatch is the sum of the magnetic field
from the magnet ring and the ambient magnetic field. The
magnetic field from the magnet ring is determined by the posi-
tion and the orientation of the ring relative to the smartwatch.
This in turn depends on three main variables: which finger
touches the screen, the contact point on the screen, and the
relative orientation of the right hand to the left hand. Fig-
ure 4a graphically illustrates these dependencies. The goal of
MagTouch is to infer which finger is touching the screen from
only the touch location and the magnetic field measured by
the smartwatch magnetometer. This is a challenging inverse
problem because of two unknown variables: the ambient mag-
netic field and the relative orientation of the right hand. Park
et al. [38] showed that this inverse problem could be solved
when the two variables are predefined.

The MagTouch method handles the first unknown variable
using a sub-module called Computational Ambient Magnetic
field Eliminator (CAME). CAME measures and saves the
ambient magnetic field when the magnet ring is at distance
from the smartwatch, i.e., when the magnetic field from the
ring is negligible. When the magnet ring approaches, the
magnetic field around the smartwatch distorts. CAME detects
the distortion and subtracts the recorded ambient magnetic
field from the magnetic field, measurement leaving only the
magnetic field of the magnet ring.

After the first unknown variable is removed, selecting from
the three fingers may be possible in the presence of the second
unknown variable. In this study, we show that the MagTouch
method accurately identifies the touching finger when the pos-
ture of the ringed hand is within normal use range. Figure 4b
conceptually depicts the computations executed by the Mag-
Touch method. The effect of the ambient magnetic field is
removed first. MagTouch then identifies the contact finger
based on the magnetic field by the magnet ring and the touch
position using a machine learning model which is trained with
data collected in various hand postures. Our results showed

Figure 4. The MagTouch method: (a) physical model and (b) the inverse
problem for finger identification.

that the classifier margins of the resultant machine learning
model could successfully accommodate the variation of rela-
tive hand positions and orientations occurring during normal
smartwatch use.

Hardware Implementation
MagTouch can be implemented using a smartwatch equipped
with a 9 degrees of freedom IMU (accelerometer, gyroscope,
and magnetometer) and a ring with a permanent magnet. Fig-
ure 5 shows our implementation of MagTouch that used an
unmodified LG Urbane smartwatch. As the permanent magnet
is the only essential component of the ring, it can be made in
different shapes using different materials (See Figure 5b, c).

The magnet’s orientation was decided based on the simula-
tion by Park et al. [38], which showed that the best finger
identification results were found when placing the magnet per-
pendicular to the finger. We selected a magnet with a magnetic
field reaching up to 100 mm. This is presumably longer than
most middle fingers [6, 36, 39], and the magnetic field can be
detected by a sensor on the opposing wrist. The cylindrical
(φ7.5×9.5 mm) magnet’s magnetic field was 18 µT measured
at the perpendicular distance of 100 mm from its axis.



In our experiments, as seen in Figure 5d, we used a ring fabri-
cated of a rubber band to accommodate different finger sizes
and used a 3D-printed spacer lodged between the smartwatch
and the wrist to secure it for participants whose wrists were
too small for the shortest watch band setting.

Figure 5. MagTouch hardware implementation. a) Smartwatch and
magnet ring worn in hands. Magnet rings made with b) ABS plastic
and c) resin. d) Magnet ring with rubber band used for experiments.

Software Implementation
MagTouch software consists of two parts, as shown in Figure 6.
The first part, which we call CAME, estimates the magnetic
field of the magnet ring. The second part is a machine learn-
ing classifier, which predicts a touching finger with a touch
location and a magnetic field vector measured at the sensor.

Figure 6. MagTouch system overview.

CAME measures the magnetic field of the magnet ring by
subtracting the ambient magnetic field from the magnetome-
ter data. This is critical to the process because the ambient
magnetic field can be a source of errors. Even though a user
touches the same location on the smartwatch with the same
finger, the magnetic field measurement changes according to
the smartwatch’s orientation relative to the earth. This section
explains the details of CAME and the classifier.

Computational Ambient Magnetic Field Eliminator (CAME)
The concept of CAME is explained as follows; when the mag-
net ring is not nearby, the ambient magnetic field is measured
and stored. When the magnet ring approaches the magnetic
field around the smartwatch, distorts the magnetic field. Sub-
sequently, CAME subtracts the saved ambient magnetic field
data from the measured magnetic field. As a result, only the
magnetic field of the magnet ring remains. The concept is sim-
ple, but requires elaborate computation because the watch may
move and rotate during the ambient magnetic field subtraction
process.

CAME uses the attitude and heading reference system (AHRS)
by Madgwick et al. [28] to find correct direction of the am-
bient magnetic field. The AHRS utilizes an accelerometer, a

Figure 7. Overview of the CAME method.

gyroscope, and a magnetometer to estimate the orientation of
an IMU sensor. The gyroscope data is used for calculating the
rotated angle; however it is prone to drift errors. As a solu-
tion, the AHRS optimizes the orientation of an IMU sensor
to minimize the difference between measured and true values
of gravity and the earth’s magnetic field. Once the AHRS
finds a stable orientation, the magnetometer is not required for
some time, because the accelerometer can handle some of the
drift error by itself. The accuracy of measurements with and
without a magnetometer were close in Madgwick et al. [28]’s
paper. CAME uses this knowledge to estimate orientation of
the ambient magnetic field when the magnet ring is near the
smartwatch.

As illustrated in Figure 7, CAME estimates the orientation of
the smartwatch with all three sensors when the magnet ring is
not near. In addition, it continuously rotates the magnetic field
data to the earth’s frame, and saves it as the reference ambient
magnetic field (EBa(t)). When the magnet ring approaches,
CAME stops saving the magnetic field data, and uses the saved
magnetic field data as the EBa(t). CAME rotates the EBa(t)
to change its frame from the earth frame to the sensor frame
(SBa(t)). Now, the SBa(t) is the estimated ambient magnetic
field to the sensor frame. CAME subtracts the SBa(t) from
the magnetometer data to get the magnetic field of the magnet
ring.

A similar method was initially proposed by McIntosh et
al. [33] and it was named “geomagnetism cancellation.” How-
ever, the two approaches differ in detail. McIntosh et al. as-
sumed a constant ambient magnetic field. We considered
wearable environments where a user could be moving between
locations. In such cases, the ambient magnetic field can change
even in the same building [43] due to ferromagnetic materials
(e.g. steel) in walls or other objects. Therefore, MagTouch
continuously updates the reference ambient magnetic field.
Moreover, the magnet detection methods are different. The



existence of the magnet ring is detected by the magnetic field
distortion detector and it is an important block of CAME. The
detection procedure is explained in the next subsection.

CAME requires an initialization step. The AHRS takes time
to converge and find the sensor‘s orientation. We set the
initialization time to 20 s which, depending on the parameters
of AHRS, is longer than the required. Usually, a few seconds
are enough to ensure that it is stabilized. Initialization runs
only once when the CAME method starts, and does not need
to be repeated. This step could be completed when powering
up the smartwatch.

When the magnet ring approaches (d(t) = 1), CAME recal-
culates the orientation of the smartwatch (qt) because biased
magnetic field data might be fed into the AHRS. CAME saves
IMU data and the reference ambient magnetic field (EBa(t))
in a buffer. We termed this process “rewind” and the buffer as
“rewind buffer.” McIntosh et al. [33] originated this method.
The size of the buffer is decided by evaluating the speed of
a hand approaching a smartwatch. If the hand moves slowly,
the buffer’s size should be large because magnetic field data
would biased for a long period. In contrast, if the user’s hand
moves fast, the buffer size can be small. In our case, the buffer
size was set to 1.5 s.

Magnetic Field Distortion Detector
Numerous concepts for detecting distortion in the ambient
magnetic field have been explored by various AHRS and HCI
research projects. One method is to compare the magnitude of
the magnetic field with a given threshold [33]. However, this
is prone to error when the distribution of the ambient magnetic
field is unstable. Moreover, the magnitude of the magnetic
field may decrease even as the magnet ring approaches due
to the directionality of the ambient magnetic field. In Fig-
ure 3, when oriented in the 6 o’clock direction, the magnitudes
of the magnetic fields were more reduced with the magnet
ring in place than it was not because the directionality of the
fields were opposed and therefore canceled out the the ambient
magnetic field.

Another approach is to use a dip angle [14, 48, 49]. A dip
angle is the angle of intersection between gravity and the
ambient magnetic field. Gravity is usually measured by an ac-
celerometer. When a magnetic distortion occurs, the direction
of the gravitational force does not change, but the direction of
the magnetic field is affected instead. Therefore, a dip angle
change may an indicate a magnetic distortion. This, however,
does not apply to MagTouch. When a user raises a hand to use
a smartwatch or swings hands when walking, an accelerome-
ter measures gravitational force and linear acceleration. It is
difficult to calculate an accurate dip angle under such condi-
tions. In this study, we present the distortion detection method
designed for MagTouch.

The distortion detector utilizes differences in the magnetic field
vectors, not the differences in the magnitudes of the magnetic
fields. In this way, it is possible to establish an index that is
constantly increased by distortions of the the magnetic field.
It is not reliable to directly use magnetometer data because
it is affected by distortions of the magnetic field, but also

by the rotation of the sensor relative to the earth. Therefore,
CAME’s distortion detector employs the measured magnetic
field rotated to the earth reference frame (EBm(t)). EBm(t) is
stable in relatively close locations. If there is no distortion,
EBm(t) does not change much no matter how the sensor moves.
When a magnetic distortion happens, EBm(t) changes a lot
because of the magnetic field around the smartwatch changes.

Figure 8. State diagram of the magnetic field distortion detector.

The distortion detector has two states, Distorted and Idle as
the state diagram in Figure 8 illustrates. Each state indicates
whether the ambient magnetic field is distorted or not. The
detector changes its state to Distorted when EBm(t) changes
more than the threshold (thrsin) in specified period (tw). To
achieve this, the distortion detector requires a circular buffer.
When the state switches to Distorted, the detector sets the
magnetic field at the beginning of the buffer (EBm(t− tw)) as
a reference. When the detector is in the Distorted state, it con-
tinuously compares the reference and the measured magnetic
field. When the two vectors converge, the detector changes
its state back to Idle. The size of the buffer (tw) should be set
based on the ambient magnetic field environment. If the am-
bient magnetic field is unstable, then the window size should
be small enough not to produce false-positive errors. More-
over, the user’s hand movement speed should be considered,
as rewind process. In our case, the size of the buffer was set to
1.5 s.

Two additional state transition rules contributes to the dis-
tortion reliability. First, the detector reverts to the idle state
when is no user interaction. The detector assumes that there
is no user interaction when the side of the smartwatch faces
down. Second, when the user taps the touchscreen, the state is
changed to distort.

Machine Learning Classifier and Required Data
The machine learning of MagTouch system identifies a which
finger is being used based on the estimated magnetic field of
the magnet ring (SBr(t)) and touch location data. MagTouch
uses a support vector machine (SVM) for the machine-learning
model. In our preliminary study, SVMs showed similar or
better performance compared to other types of models, such
as random forest or multi-layer perceptron. MagTouch uses
SVM with the radial basis function (RBF) kernel. In the final
design, LibSVM [8] was used for the machine learning model.

MagTouch requires training data drawn from various postures
a smartwatch user might assume to handle changes of relative



position and orientation of the user’s two hands. If data from
only a specific posture were provided, the machine-learning
model would be overfitted to that posture. We formulated
various postures as illustrated in Figure 9. A user needs to
collect machine-learning training data from these postures.
The postures are formulated to vary numerous horizontal and
vertical angles between a smartwatch and a hand. Posture A
illustrates a comfortable position for the user rather than a
specific one that the user should assume. The user must make
an angle of 90° and 180° between the two arms in for postures
B and C, respectively. For posture D, a user must to tilt the left
arm inward, and vertically tap the touch screen. MagTouch
uses a personalized model for each user because each user has
a different finger length. Moreover, in our preliminary study,
we observed that users have different behaviors when they tap
a target on a smartwatch. For example, some users bent their
fingers more than others did.

Figure 9. Training postures. a) A comfortable posture for a user. An
angle between two arms is b) 90° and c) 180°. d) A posture that uses a
smartwatch vertically by rotating the left arm inward.

Preliminary Evaluation of Magnetic Field Distortion Indexes
As mentioned earlier, various indexes can be used to measure
the magnetic field distortion due to the magnet ring. The most
popular ones are the magnitudes of the magnetic field and dip
angles. CAME’s distortion detector uses the difference of two
ambient magnetic field vectors at the start and the end of its
buffer (|EBm(t)−E Bm(t− tw)|). We will name this index as
the vector difference. The indexes might have different charac-
teristics. Therefore, as a preliminary evaluation, we tested the
three indexes to see which one performed best with a simple
threshold classifier. We considered various circumstances for
using a smartwatch; such as wearing the watch, looking at
the watch, walking with the watch and interacting with the
watch. We measured the indexes for each situation and com-
pared the accuracy of applying a simple threshold classifier
to each index. Vector difference is the index for the Idle to
Distorted transition. We could not test the index for the other
state transition because that requires thrsin to be determined.

We recruited eight participants (one woman, mean age=26.8).
Each participant proceeded with the following tasks. A par-
ticipant stood up wearing the smartwatch. Targets appeared
at random locations on the smartwatch for ten repetitions and
the participant tapped the targets with the index finger. After
each tap, the participant put his/her hands down. This task

was repeated ten times. Next, the participant walked along the
aisle for approximately 30 s, finally the participant unstrapped
the smartwatch and put it on a desk.

For evaluation, we calculated F1-scores for different thresh-
olds, to determine both false-positive and false-negative errors.
Both errors might cause the erroneous reference ambient mag-
netic field. We devised a simple threshold classifier that classi-
fied a data point as Distorted if its value was larger than the
threshold. We assumed data points 0.1 s before and after the
taps as true distorted data points. We normalized all data by
subtracting the mean, finding their absolute values, and scaling
them from zero to one. An example is shown in Figure 11.
We changed the threshold from zero to one and calculated the
F1-scores.

Figure 10. F1 scores of different indexes for the magnetic field distortion
by different thresholds. Bold lines indicate mean values for different par-
ticipants and the colored areas indicate the range of standard deviations.

In Figure 10, the CAME vector difference data shows the high-
est F1-score. It means when using a simple threshold classifier,
it is appropriate to use the vector difference data for compari-
son to the other data. In the case of the dip angle data, it might
cause false-positive errors when the motion of a smartwatch is
accelerated. In Figure 11, for example, there are blue peaks
that represent wearing the smartwatch, while raising a hand
to check the watch and simply walking. The magnitude data,
another index, is prone to errors in unstable distribution of
the ambient magnetic field. There are high green peaks in the
walking condition, where the ambient magnetic field value
was unstable. Moreover, some magnitude data values were
not as high as the other data for the tapping condition. This
was due to different tapping positions. If the tapping position
was far from the IMU sensor location, the magnitude value
would be small. In comparison, the peak values of the vector
difference data for the tapping condition were consistently
high. This is because the magnitude of the difference between
the two vectors is larger than the difference of the magnitude
of two vectors (|u− v| ≥ |u| − |v|). As an overall result of
these factors, the vector difference data from CAME’s mag-
netic distortion detector was the most appropriate data for the
simple threshold classifier.

USER EVALUATION
The experiment consists of three parts, which were Training,
followed by Test 1 and Test 2. The training session collected



Figure 11. An example of different indexes for the magnetic field distor-
tion detection.

data for the machine learning model. The two tests were
real-time classification tests. Test 1 was for multidirectional
evaluation. In this test, we investigated whether MagTouch can
overcome directional changes in an ambient magnetic field.
Test 2 was in-context evaluation. Test 2 measured accuracies
in different postures in realistic usage contexts.

To understand the effectiveness of the CAME method, we
compared classification accuracy results with raw magnetome-
ter data (FingMag method [38]). In the case of the FingMag
method, magnetometer measurements (SBm(t)) were used for
the training and the testing, instead of the results of CAME
(SBr(t)). Finger classifications for the FingMag method were
done offline. We compare the results of the MagTouch and the
FingMag methods in the Results section.

The participants removed any accessories on his/her hands
and wrists before the training and the tests. We then asked
the participants to tap a series of targets on the smartwatch
to collect data. Furthermore, they removed the magnet ring
and the smartwatch from their hands after each training and
testing blocks. During the training and the tests, the MagTouch
prototype logged the touch location data, the magnetic field
data of the magnet ring (SBr(t)) and the raw magnetometer
data for each tap.

Participants
We recruited 12 participants aged from 19 to 30 (mean age
= 22.6, five male) via an online school community. All par-
ticipants were right-handed. We measured the length of each
participant’s middle finger as the distance from the smartwatch
and the magnet ring might affect classification accuracy. The
average length of the middle fingers was 73.67 mm (SD =
3.42 mm)

Training MagTouch
There were eight blocks in the training session. For each block,
a participant put on the smartwatch on the left wrist and wore
the magnet ring on the right middle finger. Before wearing
the smartwatch, a participant waited for 20 s for MagTouch’s
initialization step. After the participant wore the smartwatch

Figure 12. a) The smartwatch’s diameter was 35mm (320 pixels), and the
target’s diameter was 11mm (100 pixels.) b) The four facing and rota-
tional directions for Test 1. The reference direction was used in training.
A participant c) reads a book and d) enters text using a keyboard for
Test 2.

and the magnet ring, we asked the participant to stand up, and
put his/her hands down for 5 to 10 seconds. The purpose of
this procedure was to ensure that the magnetic field distortion
detector was in the Idle state. Then, the participant started to
tap targets on the smartwatch.

A training block consists of 102 targets (3 fingers × 17 posi-
tions × 2 repeats). The positions and the sizes of the targets
are shown in Figure 12a. The order of the targets was random-
ized. As shown in Figure 9, there were four postures for the
training session. A participant performed two training blocks
for each posture. The order of the postures is the same as the
order in Figure 9. As a result, a participant tapped 816 times
(102 targets/block × 4 postures × 2 repeats). The participant
faced the same direction for all the blocks. When a participant
tapped a target with the wrong finger, we restarted that block.

Some participants intermittently tapped a target with the right
side of his/her finger during the training blocks. Participants
were instructed not to tap with the side of the finger. This
instruction was also given in Test 1 and 2.

Experiments
Tasks
The objective of Test 1 was to assess how well MagTouch
processes directional change in an ambient magnetic field.
There were two types of tasks for Test 1. For the first task,
a participant tapped targets while facing four different direc-
tions. These tasks were designed to test MagTouch in different
stationary ambient magnetic fields. When a user faced a dif-
ferent direction, the direction of a magnetic field in the sensor
frame changed. The four directions are shown in Figure 12b.
For the second task, we asked a participant to rotate in place
continuously while tapping targets. The objective of this task
was to test MagTouch in a continuously changing ambient
magnetic field. When a participant rotated, the ambient mag-
netic field that the smartwatch measured rotated as well. Test
1 was held in the same place as the training session, and the
reference direction was the same as the participant had faced
in the training session.

Test 2 measured recognition accuracies in different contexts. A
smartwatch user’s posture changes in different situations. For
example, a usage posture is different when standing straight or
when leaning back. We chose two common smartwatch usage
contexts for this test. According to McMillan et al. [34], trav-
eling, working, and relaxing were the most common activities
when using a smartwatch. However, we excluded the travel-
ing activities (e.g., walking, standing) because we surmised



that usage postures of such activities are similar to a standing
condition. Finally, we created two usage contexts; one repre-
senting work and the other relaxation. The first is the typing
context where the user types some text using a keyboard on
a desk. The second is the reading context. A user leans back
on a sofa and reads a book. Half of the participants completed
the test for typing context first, and the other half completed
reading context first.

Apparatus
Before testing began, a machine learning classifier was trained
with each participant’s data (touch data and SBr(t)). We used
a grid search method with 5–fold cross-validation to find ap-
propriate C and γ of RBF kernels for each participant. The
MagTouch prototype identified the contact fingers in real-time
during the test sessions.

Procedure
Tests 1 and 2 were held on the day after the training ses-
sion. Participants were instructed to adopt their individual
comfortable-postures.

There were five blocks in Test 1. First four blocks were for the
four directions in Figure 12b, and the last block was for the
rotational movement. The four directions were the reference,
9 o’clock, 6 o’clock, and 3 o’clock. The procedure for every
block duplicated the training session blocks except for the
participants facing a different direction for each block. A
participant tapped 510 (102 targets/block × (4 directions + 1
rotation)) targets for Test 1.

Test 2 was conducted immediately after Test 1 session. The
second session consisted of two blocks, each corresponding
a context. A participant executed the main task related to
each context by reading a book while leaning back on a sofa
or typing the consent form of this experiment on a desktop
computer. The arrangements for each main task are shown in
Figure 12c–d. Before beginning the main task, the participant
waited until MagTouch is initialized. After putting on the
smartwatch and the ring, participants placed their hands on
their laps or on the desk for 5 to 10 seconds. The smartwatch
emitted a short vibration which notified participants for the
tapping task. Then, the participant tapped a segment of targets
(10 to 12) as they had in Test 1. After tapping, the participant
resumed the main task. The intervals between the segments
were 30 to 60 seconds long. There were 10 segments in
total, and the total number of targets was 153 (3 fingers ×
17 positions × 3 repeats). The target order was randomized.
Each participant tapped 306 targets in Test 2.

During the session, an experimenter manually checked if par-
ticipants used the wrong finger and these were excluded from
the analysis (three trials in Test 2). We found that one par-
ticipant had a magnetic lipstick cap in her pocket and this
affected the calibration. The participant restarted the test after
the lipstick was removed.

Results
The average MagTouch accuracy result of Tests 1 and 2 was
95.03% (SD = 3.22%p). Figure 13 shows the mean accura-

cies and standard deviations for Tests 1 and 2. The average
FingMag accuracy result was 77.88% (SD = 12.91%p).

Figure 13. Mean accuracies for three-finger identification of Tests 1 and
2 in terms of the methods used. Error bars indicate standard deviations.

Figure 13 shows that the FingMag results for accuracy var-
ied greatly depending on the participant’s facing direction.
The FingMag accuracy for the reference direction was high.
However, it dropped when a user faced a different direction.
Conversely, the MagTouch results for accuracy were all high
(> 90%) in all directions.

Figure 14. Confusion matrix of all the tests.

The confusion matrix (Figure 14) contains all data from the
two tests. It shows that the middle and the ring finger were
those most confused with each other.

We observed the participants’ arm angles to understand how
much various postures were used in the tests. We grouped
participants into three categories based on their arm angles
: small (90°–110°), medium (110°–150°), and large (150°–
180°). Each participant could belong to more than one cate-
gory because some participants changed posture during the
tests. The results were (small = 2, medium = 8, large = 2) in
Test 1, (small = 4, medium = 7, large = 2) in Test 2-reading,
and (small=9, medium=5, large=0) in Test 2-typing. These
results demonstrate that our tests led participants to adopt a
variety of postures. The reason for many participants adopt-
ing small-angle postures in Test 2-typing was they often kept
stayed their left hands on the keyboard while tapping on the
watch.



DISCUSSION
The average recognition accuracy for MagTouch was 95.03%,
which is a 22% improvement over the FingMag results. The
MagTouch recognition accuracy was consistently high, thereby
demonstrating the efficacy of cancelling the effects of an am-
bient magnetic field. Conversely, FingMag’s recognition ac-
curacy dropped significantly when the participant faced a di-
rection during the test different to that when training. Test 2
also displayed reliable recognition performance in contexts
involving different postures and when being close to electronic
devices that caused magnetic field interference.

Most finger confusion was observed to occur between the mid-
dle finger and the ring finger. Based on participants’ feedback
and our observations, we conjecture that the participants’ pos-
ture had an effect on the classification error. Some participants
reported that it was uncomfortable to tap with a ring finger, and
we noted that participants rotated the ringed hand because a
large part of the screen was occluded. Owing to the discomfort
and the occlusion, the participants might have tried various
postures to find the optimal position. This may indicate the
need to consider collecting more data for the ring finger than
the others.

We compared our results with TriTap, where they also classi-
fied the three fingers as we did, but only used the touchscreen
of a smartwatch. MagTouch demonstrated an accuracy 16%
higher than the TriTap’s accuracy (79.4%) for the natural tap-
ping condition. Moreover, TriTap was only tested in a situation
with participants resting their arms on a desk. In contrast, Mag-
Touch was also tested in different contexts.

The increased input vocabulary can be used as shortcuts or
chords as demonstrated in previous research, but we also be-
lieve that it can be helpful for entering short text or number
phrases, such as PIN codes. Many smartwatches input 4-
digit or 6-digit PINs using keypads. It is possible to increase
the number of combinations with MagTouch while reducing
the number of keystrokes. For example, 4-digit 10-key PINs
have up to 10,000 combinations, but 3-digit 10-key PINs with
MagTouch have 27,000 combinations, 2.7 times more while
reducing the number of keystrokes by 25%.

LIMITATION AND FUTURE WORK
While the experiment showed very promising results, there
are two possible cases where MagTouch could make an error
by inaccurately sampling an ambient magnetic field. The first
case is when the user has magnetic material in her pocket.
In this case, the distortion detector is in the idle state and
MagTouch samples the magnetic field around the pocket as
the reference ambient magnetic field (EBa(t)). When the user
taps the smartwatch, the rewind process runs, and the magnetic
field around the pocket is stored for use as the EBa(t). In such
cases, we think it is possible to warn the user that MagTouch
might need recalibration. Just as map applications warn users
when a digital compass needs recalibration. MagTouch could
sense a nearby magnet if a substantial magnetometer value is
detected when a user is not interacting with the smartwatch.
It can then inform the user that MagTouch might have to
resample the correct ambient magnetic field.

The second case is when MagTouch is used within a highly
distorted magnetic field, for example, walking beside a large
metal wall. The MagTouch method doesn’t take account of
variations of the ambient magnetic field when it is in the Dis-
torted state. However, MagTouch can manage some variations.
In the rotating test in Test 1, the difference in the ambient
magnetic field was up to 10 µT, when a participant rotated
while using the smartwatch. The 10 µT variation is not smaller
than that caused by other buildings [21, 43]. Nonetheless,
further study is needed to establish the common variation of
magnetic field levels.

Another limitation is that the training process may be bur-
densome for some users. Fortunately, it might be possible to
omit the training process altogether. Let us say a user uses
MagTouch with a general classifier, which being a classifier
trained with different people’s data. It would then collect
unlabeled data during use. With this data, it might be possi-
ble to personalize the general classifier with semi-supervised
learning techniques. We tested a general classifier with the
data we collected throughout the tests, and it scored a 92.64%
(SD = 9.25%p) match. We think this is acceptable for ini-
tial accuracy. Another straightforward solution is to collect
a small amount of data during multiple sessions over an ex-
tended period (e.g. few days), rather than all at once. During
the training period, the general classifier could be applied until
all the required data is collected.

The magnetic field distortion detector that we designed for
MagTouch could be applied to other projects. Magnetic field
anomaly detection has been studied in the HCI field [33, 49],
and in AHRS research projects [14, 25, 48]. Our distortion
detector could be used for present and future HCI research
that uses magnets, and AHRS systems to adapt to magnetic
field disturbances. We will explore how the distortion detector
can enhance existing systems.

We believe that MagTouch can be applied to other devices
with touch sensors and IMUs as well, such as smartphones
and smart glasses. The increased touch input vocabulary will
enhance users’ experience by enabling rapid microinteractions
on these devices and by minimizing the distractions caused by
such interactions.

CONCLUSION
This paper introduced MagTouch; a robust and practical finger
identification method that uses magnetic field data and touch
location. MagTouch uses a magnet ring that does not require
any external power and is less disruptive to daily activities
than fingertip magnets. The paper proposes solutions, such as
the algorithm to eliminate the effects of the ambient magnetic
field, to solve problems caused by having a magnet at a dis-
tance from the smartwatch. Our evaluation revealed that the
system could identify the three fingers used for smartwatch
interactions at a 95.03% accuracy rate.
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