
DeepFisheye: Near-Surface Multi-Finger Tracking
Technology Using Fisheye Camera

Keunwoo Park1 Sunbum Kim1 Youngwoo Yoon2,1 Tae-Kyun Kim3 Geehyuk Lee1

1HCI Lab, School of Computing, KAIST, Daejeon, Republic of Korea
2HMI Research Group, ETRI, Daejeon, Republic of Korea

3Imperial College London, London, United Kingdom
{keunwoo, ksb4587}@kaist.ac.kr, youngwoo@etri.re.kr, tk.kim@imperial.ac.uk, geehyuk@gmail.com

Figure 1. a) DeepFisheye tracks 3D joint locations of multiple fingers near a touchscreen using fisheye camera. Colored points on the touchscreen
indicate the projected locations of the fingertips. b) Pipeline of DeepFisheye. Accurate hand postures were estimated by using intermediate depth
images. The estimated hand postures were used for mid-air interaction, contact finger classification, and hand posture recognition.

ABSTRACT
Near-surface multi-finger tracking (NMFT) technology ex-
pands the input space of touchscreens by enabling novel in-
teractions such as mid-air and finger-aware interactions. We
present DeepFisheye, a practical NMFT solution for mobile
devices, that utilizes a fisheye camera attached at the bottom of
a touchscreen. DeepFisheye acquires the image of an interact-
ing hand positioned above the touchscreen using the camera
and employs deep learning to estimate the 3D position of each
fingertip. We created two new hand pose datasets compris-
ing fisheye images, on which our network was trained. We
evaluated DeepFisheye’s performance for three device sizes.
DeepFisheye showed average errors with approximate value of
20 mm for fingertip tracking across the different device sizes.
Additionally, we created simple rule-based classifiers that esti-
mate the contact finger and hand posture from DeepFisheye’s
output. The contact finger and hand posture classifiers showed
accuracy of approximately 83 and 90%, respectively, across
the device sizes.

Author Keywords
Touchscreen; Finger Tracking; Near-Surface; Computer
Vision; Deep Learning
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

UIST’20, October 20–23, 2020, Minneapolis, MN, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-6708-0/20/04. . . $15.00

DOI: https://doi.org/10.1145/3313831.XXXXXXX

CCS Concepts
•Human-centered computing→ Touch screens;

INTRODUCTION
Research on mid-air and finger-aware interactions has con-
tinued to expand the input space of a touchscreen. The near-
surface multi-finger tracking (NMFT) technology tracks the
3D location of each fingertip near an interactive surface. Al-
though it enables mid-air [13, 61, 75] and finger-aware inter-
actions [61, 75, 79], there is no practical solution for NMFT
that can be applied to mobile touchscreen devices. An NMFT
system should satisfy the following requirements. It should
handle various device sizes, work in various environments,
have a small physical footprint that can fit into mobile devices,
and should not require users to wear and additional accessory.
Even though various technologies have been proposed in the
human-computer interaction (HCI) field, we could not find
one that satisfies all the aforementioned requirements. Vision-
based approaches are popular for NMFT because they are
more user-friendly than the wearable systems such as mag-
netic field sensing [9, 11], wherein users are required to wear
devices on their hands. However, the hardware configurations
of vision-based approaches [20, 61, 75] are not compact, be-
cause the camera, which has a limited field of view (FOV),
must be distanced from a the hand to capture its sufficient
portion. Yu et al. [75] attached a prism to the front camera of
a smartphone to solve this problem; however, their solution
could not distinguish and track multiple fingers.

We propose DeepFisheye, an NMFT system that can be ap-
plied to various mobile devices. It tracks all the fingertips of a

https://doi.org/10.1145/3313831.XXXXXXX

hand above a touchscreen. The system uses a single RGB cam-
era with a 180° fisheye lens (fisheye camera) attached to the
bottom center of a touchscreen, as shown in Figure 1. Owing
to its wide FOV, the fisheye camera can capture the whole hand
above the touchscreen even though the hand and camera are
within close distance. Such a compact hardware configuration
is favored for mobile devices because no separate hardware is
required. DeepFisheye estimates the 3D locations of the full
joints of a hand from a fisheye image using deep learning. It
enables mid-air interactions by tracking the fingertip locations.
Moreover, it can recognize which finger has contacted the
touchscreen and the hand posture by using the estimated joint
from DeepFisheye.

We designed DeepFisheyeNet, the deep learning model com-
ponent of DeepFisheye that estimates hand postures through
depth estimation. In numerous previous studies [7, 46, 54, 55,
81], hand postures were estimated from cropped images con-
taining only a hand for accurate pose estimation. However, in a
fisheye image, the appearance of a hand changes considerably
according to its location on the image, owing to distortion.
Therefore, to achieve improved accuracy, DeepFisheyeNet
generates a depth image from a whole RGB fisheye image,
instead of cropping hand images. Furthermore, a large-scale
dataset is essential to train the deep learning network; however,
no dataset is available for hand pose estimation from fisheye
images. Given the significant differences in the appearance
of fisheye and flat images (i.e., images following the pin-hole
camera model), training on the existing hand pose datasets
was not possible. Therefore, we collected two new datasets
to train the network. The first dataset, the synthetic fisheye
hand dataset comprises a large number of synthetic images
of virtual hands with various backgrounds and lighting con-
ditions, and the second, real fisheye hand dataset, comprises
real-world images. The latter is smaller but more realistic than
the synthetic dataset. These datasets were effectively used by
training the network on the synthetic dataset first and then on
the real dataset to fine-tune the network.

The contribution of this work is two-fold. First, we suggest
a novel NMFT technology, DeepFisheye, that has a practi-
cal form factor comprising a single color fisheye camera and
a touchscreen. Second, we provide novel hand datasets for
fisheye images, which can accelerate vision-based mobile in-
teraction research. Additionally, through a painting application
that worsk in real time, we demonstrated how DeepFisheye
can expand the touch interface. The codes and datasets will
be open to public1.

RELATED WORK

Near-Surface Finger Tracking
Various approaches have been proposed for finger tracking.
One of the most popular approaches is to use glove type de-
vices [11, 16, 19, 30, 42]. However, this approach is not
appropriate for mobile interactions, because wearing gloves
can be burdensome, especially in mobile situations. There-
fore, most near-surface finger tracking technologies for mobile
devices used a camera to track single or multiple fingers. Re-
cently, Yu et al. [75] suggested HandSee, that tracks fingertips’
1https://github.com/KAIST-HCIL/DeepFisheyeNet

3D locations using a smartphone with a prism attached to its
front camera. The prism is used to acquire a reflected image
from the touchscreen. The reflected and non-reflected images
are used to create a stereo image, and a depth image is es-
timated from it. Their system can differentiate between the
thumb, index, and other fingers. Li et al. [37] attached two
wide-angle cameras besides a display. The cameras faced the
same direction as that of the display, which cannot directly see
a hand above the screen. Therefore, they attached a mirror in
front of the camera to shift its viewing direction. Their proto-
type estimated the distance from the display to a fingertip by
utilizing the disparity in two images. WatchSense [61] tracked
thumb and index fingers by using a depth camera placed on the
user’s forearm. These research projects were used for mid-air
and finger-aware interactions because they could track multi-
ple fingers. Air+Touch [13] can track a single fingertip near a
touchscreen by using a depth camera attached to a smartphone
to obtain the image of a fingertip.

However, methods using a camera face a limitations owing
to the camera’s narrow FOV. The limited FOV of a camera
makes it difficult to capture proper hand images when the
camera is integrated into a mobile device. Therefore, Watch-
Sense [61] and Air+touch [13] attached the camera apart from
the interaction area. Li et al. [37] used mirrors to solve this
problem. However, their hardware could not acquire the im-
age of a whole hand when some parts of the hand were not
above the display. This makes finger type identification (e.g.
index, middle) from a hand image difficult. HandSee’s [75]
approach failed to cover the whole touchscreen area owing to
the camera’s limited FOV. Furthermore, owing to the prism’s
structure, the sensing volume near the prism was very narrow.

3D Hand Pose Estimation Using a Camera
Hand pose estimation has been a major research area in the
computer vision field, and it has benefited considerably from
the rise of deep learning. Especially, hand pose estimation
using a single color image as DeepFisheye, is an active re-
search area [3, 47, 63, 72, 78, 82]. Zimmermann et al. [81]
suggested a deep learning pipeline that segments a hand in
an image, identifies keypoints, and finally estimates the most
likely hand pose. Mueller et al. [46] considered more extreme
cases, wherein parts of a hand are occluded. One of the most
challenging issues in hand pose estimation is collecting large
amount of data. Therefore, Mueller et al. created a large-sized
synthetic image dataset. It includes hand images, wherein
some parts of the hand are occluded. Based on this dataset,
they demonstrated state of the art hand pose estimation perfor-
mance. Ge et al. [17] proposed a deep learning pipeline that
creates a 3D mesh of a hand from a color image. Besides 3D
hand pose estimation, CyclopesRing [8] classified hand pose
gestures with a fisheye camera located between fingers.

Depth images are commonly used for hand pose estima-
tion [12, 41, 45, 67, 80]. Oberweger et al. [53] estimated
hand poses with multi-layer convolution networks from depth
images. They used ResNet [25] for their following work [52]
to achieve improved accuracy in addition to using data aug-
mentation techniques such as image rotation and translation.
Qi and Kim [74] solved the occlusion problem by handling

https://github.com/KAIST-HCIL/DeepFisheyeNet

visible and occluded parts of the hand differently. They al-
lowed multiple states for the occluded joints and designed
probabilistic loss. Mueller et al. [48] proposed a method that
utilizes both color and depth images.

Mid-Air Interaction Technology
Mid-air interaction is an important research stream in the HCI
field. Some related studies used a camera to track fingers [1,
70] and recognize gestures [4, 28, 59]. However, these meth-
ods are not suitable for near-surface interactions. Yang et
al. [73] used a fisheye camera on a smartphone and a fisheye
lens to track fingers near the device. However, they could
not track the 3D location of a fingertip. Besides a camera,
different types of sensing methods: magnetic field [10, 24, 44],
acoustic [50, 77], and electric field [26, 33, 38, 69] have been
proposed. However, magnetic field sensing methods require
magnets to be attached on the fingertips. The other methods
were unable to discriminate the finger type.

Finger Identification Technology
There are various approaches to finger identification, e.g.,
using color markers [20, 68], wearable sensors [6, 23, 43],
magnet [56]. However, wearing sensors or markers would
be burdensome during daily activity. Computer vision meth-
ods [14, 27, 29, 79] and capacitive sensors [18, 32] were
utilized to solve the problem. However, these methods were
unsuitable for mobile devices [14, 27, 79], worked only for
certain postures [18, 32], and were evaluated with only a single
person [29].

HARDWARE CONFIGURATION: FISHEYED SURFACE
We designed a hardware prototype called FisheyedSurface. It
is a Microsoft Surface device with a fisheye camera attached
at its bottom, as shown in Figure 1a. The fisheye camera
comprises a fisheye lens with 220° FOV, and a machine vision
camera (FLIR CM3-U3-13Y3C-CS). Our goal was to main-
tain the original form factor of the Microsoft Surface device
as much as possible because we wanted to explore the possi-
bility of integrating DeepFisheye into existing smart devices.
The fisheye camera was attached to the bottom center of the
Microsoft Surface device as closely as possible. It was aligned
to match its 180° FOV line with the touchscreen surface. We
selected the bottom center location because, if the camera is
placed on the top side, it cannot capture the complete shape of
the hand, as illustrated in Figure 2b. The bump of the fisheye
lens was approximately 3 mm. It may be possible to decrease
the bump by scaling down the whole camera system, similar
to that in smartphones.

Figure 2. a) Close up view of the fisheye lens. b) Comparison of the
two fisheye camera attachment options: top and bottom. Camera when
attached to the bottom side is more advantageous to capture the whole
hand.

An alternative choice could be a depth camera, which was
widely used in hand pose estimation research [2, 52, 53, 76,

74]. However, using a depth camera on a mobile device to
capture an interacting hand is not adequate because depth
cameras, which use the time-of-flight method are unable to
capture a nearby object correctly. Moreover, there is no depth
camera with 180° FOV, to the best of our knowledge.

DEEPFISHEYE HAND DATASET
A large-scale dataset is essential for the learning-based hand
pose estimation model. Although several hand datasets are
available [5, 46, 48, 58, 64, 76], we created our own because
the existing ones comprise only flat images that follow the
pinhole camera model. Unlike flat images, fisheye images are
highly distorted, and the hands are occluded at some locations,
as shown in Figure 3. This type of distortion and occlusion can
lead to poor performance if we input the fisheye images into a
hand pose estimator trained on flat images. Alternatively, we
considered dewarping fisheye images, e.g., converting them
to equirectangular images. However, polar parts of a fisheye
image get stretched and distorted when the image is dewarped
to an equirectangular image [15, 35, 62].

Figure 3. Appearance of a hand in fisheye images differs according to
its location relative to the camera. a) Distortion is not severe when the
hand is far. b) Considerable amount of distortion occurs when the hand
is close to the camera. The fingers look shorter and the palm bigger. c)
When the hand moves to the side of the touchscreen, the shape of the
hand becomes curved and the fingers are occluded between them.

Creating a dataset is expensive because it requires collecting
real images in diverse environments and annotating accurate
3D positions of the hand joints. In fact, other studies have
created hand datasets synthetically with virtual hand mod-
els [46, 48] for cost effectiveness. However, real and synthetic
images differ considerably in several aspects, e.g., texture,
lighting, shadows. Owing to this “domain gap,” if a deep
learning model is trained only with synthetic images, it may
not perform satisfactorily with real images [46]. Therefore, we
created two datasets. The first, DeepFisheye synthetic dataset,
comprises pairs of hand images and 3D joint data. The second
is the DeepFisheye real dataset that comprises pairs of real
hand images and 3D joint data. The synthetic dataset was used
for initial training of a network estimating 3D hand pose, and
the real dataset for decreasing the domain gap by fine-tuning
the network.

DeepFisheye Synthetic Dataset
DeepFisheye synthetic dataset comprises three types of data:
fisheye color image, fisheye depth image, and 3D joint data.
During dataset creation, we first collected the hand postures

because we aimed to consider realistic postures that a user can
actually assume. We collected this data for four individuals
using a Leap Motion device. Among the four individuals, two
were the authors of this paper, and the other two were recruited.
The participants performed the requested motions above the
Leap Motion device. The motions were: (i) folding only one
finger from the thumb to pinky finger, (ii) unfolding only one
finger from thumb to pinky finger, (iii) folding two consecutive
fingers, (iv) unfolding two consecutive fingers, (v) folding and
unfolding all the fingers, and (vi) free movement. The partici-
pants were asked to slowly assume the postures, while joint
data were continuously collected at 120Hz. Approximately 5 s
were required to assume a posture.

We created a virtual space and hand models to generate syn-
thetic images, as shown in Figure 4. In the virtual space, color
fisheye and depth fisheye cameras were placed at the cen-
ter. This setting is different from that of the FisheyedSurface,
wherein the camera was placed at the bottom side. This is
because we aimed to make our dataset generic so as to be used
by other researchers. The fisheye camera used the equidistance
model that many fisheye lenses follow [36].

Figure 4. a) Hand joint model. Center of the hand was defined as the
middle finger’s metacarpophalangeal joint, and size of the hand was de-
fined as the distance between the wrist and the center point. b) Virtual
space where the synthetic data were collected.

The hand model has 21 joints as shown in Figure 4a. The
center of the hand was defined as the middle finger’s metacar-
pophalangeal (MCP) joint, and the size of the hand as the
distance between the wrist and the center of the hand. All the
hands were normalized to the unit hand size of 1. There were
two right-hand models–one each for the white and black skin
colors. Even if we collected the data only for the right hands,
we flipped the images and joint data during training to consider
both the right and left hands. The size of the virtual space
was 3× 3× 2, where the center of the hand model could be
located. The size of the space was determined by considering
the possible hand movement range for the touchscreen of a
large tablet, such as Microsoft Surface.

Outlined is the procedure for the dataset creation: (i) we set up
a hand model to assume one of the postures that we collected,
(ii) the hand model was placed and rotated randomly in the
space, and the fingers were stretched with a random ratio
between 0.8 and 1.2, (iii) finally, we captured the hand images
with the two aforementioned cameras.

The images were augmented through post-processing. The
virtual space had no background, which is an unrealistic situa-

tion. Therefore, we added background images to the collected
hand images. We used 10,000 random images from the Flickr
website as backgrounds. Moreover, we randomized the hand
color to consider various skin colors and simulate different
lighting conditions. For color randomization, the gamma val-
ues of the hand images were randomly varied between 0.25
and 2.0. These values were suggested by Mueller et al. [46].
Figure 5 shows sample images from the dataset.

Figure 5. Synthetic image samples. Color fisheye images on the left side
and depth fisheye images on the right side of each pair.

DeepFisheye Real Dataset
This dataset comprises pairs of real color fisheye images and
3D hand joint data. We were unable to collect real fisheye
depth images because we could not find a depth camera with
180° FOV. We built a device called FishLeapFrame to collect
the pairs. This apparatus uses the fisheye camera and the
Leap Motion device, as shown in Figure 6. We used the Leap
Motion device to collect the 3D joint data and assumed the
data as ground truth because we could not use data gloves
or marker-based tracking systems. These attachments affect
the hand appearance, which is crucial in training the model.
In previous studies, Leap Motion devices showed fingertip
tracking errors from 5 [66] to 17 mm [65], which were accurate
for dynamic [40] and static [57] gesture recognition and finger
classification [14].The fisheye camera was the same as that in
FisheyedSurface.

We defined an imaginary space called the “hand moving space,”
where a participant moves her hand. Its bottom plane was
considered to be a touchscreen, and we captured the hand
movement above this imaginary touchscreen. The area started
right above the frame, and its height was approximately 20 cm.
This was not a strict restriction, but a rough guideline. When a
participant moved her hand in the hand moving space, fisheye
images were captured by the fisheye camera and the 3D hand
joints were collected by the Leap Motion device. The fisheye
camera was placed at the lowest surface of the hand moving
space. The Leap Motion device was positioned 22 cm below
the hand moving space to ensure that the distance between
the hand and the device was larger than the minimum sensing
range.

Four people, including two authors of this paper participated
in the real dataset collection. The participants were required
to move their hands to every possible location in the hand
moving space for 20 min. Furthermore, they were required
to modify hand postures freely and differently. Out of the 20
minutes, participants kept their arms covered with sleeves for
10 min, and left them uncovered by rolling up the sleeves for
the remaining 10 min. The purpose of this was to not train
the model to not recognize parts of an arm as the hand. We
collected all the data at the same location. The collected data
comprised 42,000 pairs of images and 3D ground truth joint

Figure 6. a) FishLeapFrame to collect pairs of fisheye images and 3D
hand joint data. b) Participants moved their hands in the “hand moving
space,” located above the frame.

data. Hand postures in the two datasets may not be as diverse
as those in the existing datasets [46, 76] for general hand pose
estimation. However, our datasets cover most of the hand
postures for multi-finger touchscreen interactions suggested
by previous studies [21, 49, 79].

DEEPFISHEYE PIPELINE
DeepFisheye pipeline first preprocesses a fisheye image, and
then estimates the 3D locations of all hand joints with Deep-
Fisheye network (DeepFisheyeNet). Then, two rule-based
classifiers classify contact fingers and hand postures. Contact
fingers and hand postures are two interaction elements defined
by us. Figure 1b shows the complete pipeline of DeepFisheye,
wherein the final outputs are highlighted in red color.

Preprocessing
The goal of this preprocessing is to reduce the domain gap
between real and synthetic images as much as possible using
simple computation. Therefore, this step was performed only
when the input was a real image. There are two parts in this
step. The first part involves fisheye image calibration. Usu-
ally, virtual (ideal) and real cameras have different projection
model parameters because the curvature of a real lens and
alignment of a real image sensor are different than those of
an ideal camera. The calibration process compensates these
errors by remapping real images to follow an ideal camera’s
projection model parameters. The calibration process centers
the circular image on the actual center of the image, finds
the direction to the 3D point with the real fisheye projection
parameters, and reprojects the 3D point with the ideal fisheye
projection parameters. We used OCamCalib [60] to obtain
projection parameters of the real fisheye camera. We verified
this calibration process with a checkerboard. The image size
was 720× 720 px. The calibration mean error was 8.2 px
(STD: 1.1 px). It was approximately 1% of the image length.

The next part of preprocessing is image sharpening, or “un-
sharp masking.” One of the major differences between the
real and synthetic images as per our observation was sharp-
ness. Therefore, we made the edges in the real images clearer.
The image sharpening process was adding a high pass filtered
image to the original image.

DeepFisheye Network
DeepFisheyeNet comprises two sub-networks: Pix2Depth
(P2DNet) and hand pose estimator (HPENet) networks. Fig-
ure 7 is a simple illustration of DeepFisheyeNet. The complete

illustration is provided in the supplementary material. Every
input image is resized to 256×256 px. Then, P2DNet gener-
ates a depth image of the hand from the fisheye color image
input. Next, hand parts of the color image are segmented using
the generated depth image. Segmentation is a simple process
that selects pixels from the color image only when the value
of the corresponding pixel on the depth image is larger than
0. The depth image assists HPENet to achieve more accurate
hand pose estimation. We also used intermediate hand pose
estimators (IHPEs) that estimate joint coordinates from the
intermediate feature maps. HPENet estimates the final hand
pose, relative to the fisheye camera. Some studies generated
depth images of a hand from a color image [51], and then used
them to improve the hand pose estimation performance [7,
34]. The key difference between DeepFisheyeNet and the
existing networks is that the former generates depth images
from a color images and uses both color and depth images
for hand pose estimation. Regarding HPENet, it is a modified
version of Mueller et al.’s network [48]. The joint decoder in
HPENet decodes joints from the encoded features, wherein
the modification was made.

Figure 7. Simple illustration of DeepFisheyeNet. P2DNet generates a
depth image, and HPENet estimates 3D joint locations using both the
color and depth images. Joint decoder estimates the direction and dis-
tance of joint locations separately. Heatmap losses are not included in
this figure.

The joint decoder is a specially designed module for Deep-
FisheyeNet. It outputs 3D joint data represented as spherical
coordinates (r,θ ,φ), and then converted to Cartesian coordi-
nates (x,y,z). Predicting spherical coordinates is preferred
than directly predicting Cartesian coordinates because fisheye
projection models follow spherical coordinates and the direc-
tion and distances are disentangled as shown in Figure 8. This
representation is also used in other fisheye image based body
pose estimation [71]. Unlike previous networks [48, 71], we
used global average pooling layers instead of fully connected
layers to increase the network’s speed.

The joint decoder has two subparts–one estimates a heatmap
for each joint, and the other estimates the distance for each
joint, as shown in Figure 7. A heatmap is a 2D probability

Table 1. Training steps and hyperparameters.

Step Training module Dataset Batch size

Learning rate Iteration (epoch)

1 P2DNet Synthetic 32

1e-3 69,880 (12)

2 DeepFisheyeNet Synthetic 16

P2DNet: 1e-4, HPENet: 1e-2 69,880 (6)

3 DeepFisheyeNet Real 16

P2DNet: 1e-5, HPENet: 1e-4 31,690 (12)

map of a joint on the image. From the heatmap’s maximum
point, the direction to the joint, (θ ,φ), can be calculated using
the fisheye projection model, as illustrated in Figure 8. By
combining the estimated direction and distance (r), the 3D
location of the joint is determined. The IHPEs use the same
approach.

Figure 8. Fisheye (equidistance) projection model. Points with the same
direction from the camera (θ ,φ) are projected on the same point. f is a
constant.

Training
The training comprises three steps. First, P2DNet is trained
with the synthetic dataset to be used for the next step. Sec-
ond, the whole DeepFisheyeNet is trained with the synthetic
dataset. This step mainly trains the HPENet part. Third, Deep-
FisheyeNet is fine-tuned with the real dataset. We used Adam
optimizer [31] and the parameters listed in Table 1. We used
80% (~186,000) of the synthetic dataset for the training and
20% (~47,000) for testing. The whole real dataset was used
for the training.

There were three types of outputs, including intermediate
outputs, namely, heatmap, depth, and distance. We calculated
L2 losses for all the three types during training, as shown in
Figure 7. The ground truth heatmaps were created by applying
a 2D Gaussian filter centered at the joint coordinates. In the
case of distance outputs, we did not directly calculate the loss;
instead, we calculated the loss with the joint output (joint loss)
and the loss was backpropagated. Moreover, different weights
were applied to the losses (joint loss = 1.0, intermediate joint
loss = 0.5, heatmap loss = 250, intermediate heatmap loss =
125).

One of the challenges that we faced was the absence of fisheye
depth images in the real image dataset. Therefore, depth losses
that comprise an important type of loss for P2DNet were not

available for step 3 of the training. However, the early part
of P2DNet could be trained because of IHPEs that helped
to fine-tune P2DNet with real images. Without IHPEs, the
P2DNet could not generate proper depth images.

We transformed the images during training in all the steps. We
randomly flipped them and randomized their brightness, con-
trast, saturation, and hue. Moreover, we blurred the synthetic
images with a Gaussian filter because they were considerably
sharp compared to the real images. We rescaled the hand joint
data so that the hand size was 1. This was done to match
the scales of synthetic and real data. Therefore, when Deep-
Fisheye is used in real images, a user’s hand size must be
multiplied with the DeepFisheyeNet’s output.

NETWORK VERIFICATION: ABLATION STUDY
DeepFisheyeNet is a result of our iterative process to improve
hand pose estimation accuracy. Our method, that generates
a depth image from a color fisheye image and utilizes both
images for hand pose estimation is originally introduced in this
research. Therefore, we aimed to evaluate the importance of
P2DNet by answering the following question: “Does P2DNet
improve the 3D joint estimation performance?” To answer this
question, we compared two different HPENets, and the syn-
thetic dataset was used for this comparison. The first HPENet
was trained with both color fisheye and generated depth im-
ages. It was same as the DeepFisheyeNet trained until step
2 of the training. The second HPENet was trained only with
fisheye images with the exact same setting as the first.

The percentage of correct keypoints (PCK) of all the joints
were calculated and plotted in Figure 9. PCK represents the
ratio of correct keypoints for different thresholds. A keypoint
is considered to be correct when its error is less than a certain
threshold. The result in Figure 9 shows that DeepFisheyeNet
outperformed the HPENet for every threshold. Therefore, the
answer to the aforementioned question is affirmative–“P2DNet
improves the joint estimation performance.”

Figure 9. Result of the ablation study. Generated depth images im-
proved the hand pose estimation performance.

INTERACTION ELEMENT CLASSIFIERS
We designed simple rule-based classifiers for contact finger
and hand posture classifications to explore DeepFisheye’s
potential for other interactions. The classifiers use 3D joint
output of DeepFisheyeNet as an input.

Contact Finger Classifier
The contact finger classifier classifies which finger among
the five has contacted on a touchscreen. It can be used for
various finger-aware interfaces [6, 22, 23]. In its simple al-
gorithm, the finger with its fingertip closest to a touch point
is selected. The classifier calculates the distances between
the fingertips and a touch point in spherical coordinates and
applies different weights for each axis because the joint de-
coder in DeepFisheyeNet separately estimates the direction
and distance to a 3D joint location. Therefore, each axis in the
spherical coordinate may contribute differently to the accuracy.
The classifier calculates the distances between the fingertips
and a touch point using Equation 1. Then it selects the finger
with the smallest distance. This classifier has two parameters:
the weight of θdi f f (α) and the weight of rdi f f (β). The pa-
rameters were decided by the pilot test, which are explained
in the following section.

distance = φdi f f +α ·θdi f f +β · rdi f f (1)

Hand Posture Classifier
The interaction space would be expanded by using hand pos-
ture information as demonstrated in [79, 39]. The hand pos-
ture classifier estimates the hand posture when it touches the
touchscreen. The classifier discriminates three postures as
shown in Figure 10, and classified them as open, pinch, and
point postures. The posture classifier is activated only when
the touchscreen is tapped with the index finger.

Figure 10. Hand postures. a) Open, b) pinch, and c) point postures.

Hand postures were recognized from the folding states that
indicate if a finger is folded or opened. The classifier chooses
the posture with the most similar states to the current fingers
as the estimated posture. When a finger is opened, its fingertip
is more far from the wrist compared to its MCP joint. The clas-
sifier uses this geometrical characteristic to identify whether
a finger is folded or not. The classifier first normalizes the
joint data by dividing it by the hand size. Next, it projects
all the joints to the touchscreen plane. Then, it calculates the
distance from the wrist to the fingertip and from the wrist
to the finger’s MCP. If the difference of the two distances
is larger than a certain threshold, the finger is considered as
opened (distToTip−distToMCP > threshold). In case of the
thumb, we used the pinky finger’s MCP instead of the wrist,
because the thumb folds in the horizontal direction of the palm,
whereas the other fingers in the vertical direction. Therefore,
the classifier has two threshold parameters: first for the thumb
and second for the other fingers. The parameters were decided
by a pilot test.

Pilot Test
We collected two types of data: contact finger and hand pos-
ture data, for optimizing the contact finger and hand posture

classifiers, respectively. FisheyedSurface was used for the data
collection. The participants in the real dataset collection also
participated in this dataset collection.

FisheyedSurface was set on a desk and it was tilted at approxi-
mately 40°. There were two sessions, wherein contact finger
data were collected in the first. A participant sat on a chair
and drew zigzag lines from the left top to the right bottom
corner with one finger. The participants were asked to draw
lines evenly on the touchscreen. While drawing the lines, the
participants kept all the fingers open. The reason for this is
while using finger-aware interface, opening the fingers in more
preferable than closing the hand [79]. A touch point and an
image were recorded for 5 frames-per-second (FPS), and we
verified that 500∼ 700 samples were collected for every finger
of each participant. Participants repeated this process for all
the fingers, from the thumb to pinky finger.

Hand posture data were collected in the second session. Only
the pinch posture and point posture data were collected, be-
cause open posture data were already collected in the first
session. The procedure was exactly the same as in the first
session, except that the hand postures were changed, but not
the touching finger.

By using the collected data, we identified the best parameters
for the contact finger and hand posture classifiers. We applied
various combinations of the parameters and chose the one with
the best accuracy. We estimated 3D joint coordinates for every
image by using DeepFisheyeNet that was completely trained,
and used the coordinates as input to the classifiers. The search
ranges of the parameters were 0∼ 2 and 0∼ 0.02 for α and β ,
respectively, in the contact finger classifier. We set the search
range of β smaller than α by considering the value ranges of
r (in mm) and θ (in radian). The search space of −1∼ 1 was
used for the hand posture classifier thresholds.

For the contact finger classifier, (α = 0.4, β = 0.004) showed
the best result. For the hand posture parameter, using thresh-
olds of 0.0 for the thumb and 0.6 for the other fingers showed
the best result. We used the selected parameters for the user
test and our real-time prototype.

USER TEST
We tested DeepFisheye with different people in various en-
vironments to evaluate its performance. We measured hover
fingertip tracking error, contact finger classifying accuracy,
and hand posture classifying accuracy. We collected three
types of data for this test. The mid-air hand data were col-
lected for measuring tracking error. This data comprises pairs
of real fisheye images and 3D ground truth joint data. The
touch hand and hand posture data were collected to evaluate
the contact finger and hand posture classification accuracies,
respectively. Pairs of real fisheye images and touch points
were included for both the types of data.

Data Collection
We recruited 12 participants from an online school community.
Their average age and average hand size was 22.8 (STD = 3.6)
and 73.9 mm (STD = 4.7 mm), respectively. Four different
places: a seminar room, workshop, cafe, and outdoor terrace

were chosen. We selected these places by considering various
backgrounds and lighting conditions. Similar to the pilot study,
we set open hand posture as a default posture. To this end, we
asked the participants to comfortably open all fingers while
collecting data, except while collecting hand posture data.

First, we collected mid-air hand data. We used FishLeapFrame
that was also used for collecting the real image dataset. A
participant sat in front of the frame and moved their right hand
in the hand moving space for two minutes. In this situation,
fisheye images and ground truth joint data were collected. The
participant was asked to move their hand to every part of the
hand moving space. Moreover, they were requested to slightly
tilt their hand toward the ground so that the hand posture
would be similar to that as when using a touchscreen. After
the data collection session, we checked if the Leap Motion
device properly tracked the hands by projecting the joint data
to the real images. Next, we collected touch hand and hand
posture data at the same place. The procedure for this was the
same as that of the pilot test.

Figure 11. Sample images from the user test for different test locations
and hand locations. The test locations had various background and light-
ing conditions.
Samples of the collected images are presented in Figure 11.
More images are in our supplementary document. Images of
different places and hand locations are presented in Figure 11.
The workshop and cafe had complex backgrounds. In contrast,
the seminar room had simple white background. The terrace
that was lighted only by the sunlight was brighter than the
other places. Some edges of the hand were not visible owing to
saturation caused by the sunlight. We would like to emphasize
that none of the data collected from the user test were used for
training the deep learning model or optimizing the classifier
parameters.

Offline Evaluation
One of the motivations for this research is to create a system
that can be applied to various device sizes. Therefore, we
analyzed the errors for different areas. We considered three
sizes: that of a large tablet, small tablet, and smartphone,
and the reference devices were Microsoft Surface, iPad Mini,
and iPhone 11, respectively. Figure 12 illustrates the screen
sizes of the devices relative to FisheyedSurface. We defined
the terms “touch area” and “hover space” as follows. Touch
area is a subarea of the FisheyedSurface touchscreen with
the size of its reference device’s touchscreen, as shown in
Figure 12. These areas were used for evaluating the contact
finger and hand posture classifiers. Only data inside the area of

Figure 12. Target device sizes.

Figure 13. a) Fingertip tracking errors for each finger. Error bar repre-
sents standard deviation. b) PCK for different thresholds.

each device size were included for the evaluation. Regarding
finger tracking accuracy, we defined the “hover space” for each
device size. Hover space is a space above FishLeapFrame with
the same area as the touch area with 100 mm height. For the
evaluation, we filtered out data that were outside the hover
spaces.

We calculated Euclidean distance errors for all the fingertips,
and the average errors for each device sizes were: large tablet
= 20.1 mm (STD: 13.7 mm), small tablet = 19.2 mm (STD:
12.6 mm), smartphone = 19.6 mm (STD: 12.6 mm), as shown
in Figure 13a. The PCKs for each device size are shown in
Figure 13b. It can be seen from the figure that the tracking
accuracy for the large tablet was lower than that of the others.
The spatial distribution of errors is plotted in Figure 14a. The
location of a point is the ground truth location of a fingertip.
The graph was divided into 5 mm grids, and errors in the same
grid were averaged.

The finger classification accuracy distribution on the touch-
screen is presented in Figure 14b. The graph is divided into
96×96 px size cells, and each cell shows the average accu-
racy of the respective area. Figure 14c shows the confusion
matrices for each device size. The accuracies for the 5 fingers
were 81, 85, and 84% for the sizes of large tablet, small tablet,
and smartphone, respectively.

Furthermore, accuracy of the hand posture was evaluated for
different touch areas. The distributions of the accuracies are
shown in Figure 14d. The confusion matrices for different
device sizes are shown in Figure 14e. The accuracies were

Figure 14. a) Hover fingertip tracking error distribution. b) Contact finger classification accuracy distribution and c) Contact finger classification
confusion matrix. d) Hand posture classification accuracy distribution and e) Hand posture classification confusion matrix. There are no samples in the
white cells.

89, 90, and 90% for large tablet, small tablet and smartphone,
respectively.

Discussion
The overall tracking error was approximately 20 mm, and
more than half of the errors were smaller than this (Figure 13b).
The near-right side of the camera showed relatively higher er-
ror values (Figure 14a), and they belong to the thumb. When
the hand was at the right side of the camera, sometimes the
thumb was aligned with the other fingers, and then, occa-
sionally edges of the thumb’s fingertip were unclear in the
image. A sample image illustrating the error case is presented
in Figure 15a.

Figure 15. When the thumb was aligned with the other fingers, some-
times a) joints were incorrectly estimated owing to unclear edges of the
fingertip. Cyan points represent the estimated thumb joints. b) Example
of correctly estimated joints.

We compared our tracking performance to one of the state-
of-the-art results. Mueller et al. [48] used flat color and flat
depth images for hand pose estimation. Their model showed
errors with approximated value of 20 mm across the fingertips.
This comparison may be inappropriate, because the datasets
are different and they used real depth images. However, this

comparison shows that DeepFisheye’s fingertip tracking per-
formance is not overly inferior than that of existing solutions
that work with flat images.

Finger classification accuracies across the device sizes were
approximately 83%. The thumb showed the best result because
it was far from the other fingers. The graph in Figure 14b
shows that the performance was not good at the left and right
sides of the touchscreen. When the hand moved to the sides,
the fingers were occluded and that could have led to an error.
Additionally, error values were also high near the camera. One
of the possible reason could be that the images were dark when
the hand was at a close distance, because a large part of the
camera lens was covered by the hand. Another reason could
be that the hand images were highly distorted when the hand
was at a close distance.

It is difficult to directly compare the performance of our finger
classification with that of previous studies because the sizes of
the devices and target fingers were different. Nonetheless, we
compared our results with state-of-the-art finger classification
results to gain insight into our results. HandSee [75] could
classify 3 classes with 98 and 89.7% of accuracies for 5 classes.
Its differences with DeepFisheye are that it was only tested
with a smartphone and it grouped the middle, ring, and pinky
fingers as a single class. InfiniTouch [32] could classify five
fingers at an accuracy of 96%, however, most of the fingers
had to be contacted with the capacitive sensor.

The hand posture accuracy was approximately 90% across
the different device sizes. The pinch and point postures were
the most confusing ones. Errors in them mainly occurred
at the bottom left of the touchscreen. In this area, thumbs
can be easily occluded by the hand. Furthermore, similar

to finger classification, DeepFisheye’s results became less
accurate when the hand was very close. We compared our
hand posture classification accuracy with that of other related
work. Zheng et al. [79] classified three postures, including
our the “open” and the “point” postures near the keyboard.
Their classification result (89.1%) was comparable to ours.
In contrast to DeepFisheye, they used a green background to
easily segment a hand and used a camera at a distance from
the keyboard.

EXAMPLE SCENARIOS WITH INTERACTION ELEMENTS
We implemented a working prototype with FisheyedSurface
to demonstrate how DeepFisheye can be used for various
interaction scenarios. We created a painting application that
utilizes the locations of fingertips, contact finger information,
and hand postures. The stream of fisheye images could be
processed in real-time (18 FPS) on a GeForce GTX 1060
GPU.

Finger-aware functions are possible by using the results of
contact finger estimation. A user can paint with her index fin-
ger and erase with her middle finger. Furthermore, a function
preview was implemented for the multi–functional button on
the top left to help inexperienced users who are unaware of
the function–finger mappings (Figure 16a). When a finger ap-
proaches the function button at sufficiently close distance, the
corresponding function preview appears on the button. This
preview functionality was made feasible by the finger tracking.
The multi–functional button reduces the need for multiple but-
tons on the touchscreen so that a user can use a larger canvas.
Additionally, the interaction vocabulary was expanded by uti-
lizing hand postures. For instance, dragging mode can vary
according to the hand posture. The user can move a selected
object with a pinch posture and copy the object with a point
posture as shown in Figures 16b and c.

Figure 16. a) Mapped functions appear when a finger approaches the
button. The user can b) move or c) copy shapes through different pos-
tures. Additional scenarios are presented in our supplementary video.

LIMITATIONS AND FUTURE WORK
We observed that the accuracies of the contact finger classi-
fication reduced at the sides of the large tablet area. In those
regions, parts of the hand in the images were small and the
fingers were easily occluded. Minute details of the hands are
important in this case, and using images with higher resolution
can improve the performance. Similarly, Xu et al. [71] used
a fisheye camera to estimate the body pose: they used two

images of a downsampled image capturing the whole body
and a cropped image showing details of the body parts far
from the camera. Our future work would be to use higher
resolution images to increase tracking accuracy, and it can be
accomplished without sacrificing processing speed because
there is scope for optimizing the network.

The contact finger and hand posture classifiers showed rela-
tively low accuracy near the camera. This problem may be
related to the datasets. We collected both synthetic and real
datasets by locating the hands evenly in the Cartesian space.
However, hand images distort a lot when the hand is near the
camera than far. Therefore, more diverse hand images can
exist when the hand is near the camera. In our future work, we
plan to create a dataset comprising more near-camera data to
solve this problem.

In this study, we used the devices in a specific orientation
(e.g., portrait or landscape). If the user changes the device
orientation, the current DeepFisheye may fail to track the
fingers because it was not trained with the hand images in
the new orientation. A straightforward solution to this could
be to use a separate camera for each orientation, however, it
may not be cost-effective. A more desirable solution may be
to augment the network with datasets covering both device
orientations. The modified DeepFisheyeNet should be able
to track the fingers in both device orientations. This is a new
challenge deserving future research, especially because hand
images in diverse orientations are expected to contain more
self-occlusion issues. We expect that such occlusion issues
can be overcome based on the fact that Mueller et al. [46]
was able to handle similar occlusion issues by intentionally
including occluded parts of a hand in their dataset.

We used Leap Motion data as ground truth data in the hover
tracking test. Therefore, the test results may have been af-
fected by the errors in the Leap Motion data. For a more
accurate evaluation, we require more accurate ground truth
data. The possible options that we will consider in our future
work include using a multi-camera system [82] and a manual
annotation method [48].

CONCLUSION
We proposed DeepFisheye, a NMFT system that expands the
input space of a touchscreen. In addition to finger tracking,
DeepFisheye can classify contact fingers, and recognize hand
postures. DeepFisheye has a practical form factor for mobile
devices because it comprises a smart device and a fisheye
camera attached to that device. We evaluated DeepFisheye’s
performance for three different device sizes. DeepFisheye
was able to track 5 fingertips of an open hand with errors of
approximate value of 20 mm in various device sizes. Further-
more, it could classify contact fingers and hand postures with
approximate accuracy of 83 and 90%, respectively, across the
various touchscreen sizes. Despite the remaining challenges,
DeepFisheye demonstrated a novel way of tracking fingers
near a touchscreen within a practical form factor.

ACKNOWLEDGMENTS
This work was supported by Institute for Information & com-
munications Technology Promotion(IITP) grant funded by the
Korea government(MSIT)(No.2020-0-00537, Development of

5G based low latency device – edge cloud interaction technol-
ogy)

REFERENCES
[1] 2016. Spatio-Temporal Hough Forest for Efficient

Detection-Localisation-Recognition of Fingerwriting in
Egocentric Camera. Comput. Vis. Image Underst. 148, C
(July 2016), 87–96.

[2] Seungryul Baek, Kwang In Kim, and Tae-Kyun Kim.
2018. Augmented Skeleton Space Transfer for
Depth-Based Hand Pose Estimation. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR).

[3] Seungryul Baek, Kwang In Kim, and Tae-Kyun Kim.
2019. Pushing the Envelope for RGB-Based Dense 3D
Hand Pose Estimation via Neural Rendering. In The
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

[4] Gilles Bailly, Jörg Müller, Michael Rohs, Daniel
Wigdor, and Sven Kratz. 2012. ShoeSense: A New
Perspective on Gestural Interaction and Wearable
Applications. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’12).
Association for Computing Machinery, New York, NY,
USA, 1239–1248. DOI:
http://dx.doi.org/10.1145/2207676.2208576

[5] Sven Bambach, Stefan Lee, David J. Crandall, and Chen
Yu. 2015. Lending A Hand: Detecting Hands and
Recognizing Activities in Complex Egocentric
Interactions. In The IEEE International Conference on
Computer Vision (ICCV).

[6] Hrvoje Benko, T. Scott Saponas, Dan Morris, and
Desney Tan. 2009. Enhancing Input on and above the
Interactive Surface with Muscle Sensing. In Proceedings
of the ACM International Conference on Interactive
Tabletops and Surfaces (ITS ’09). Association for
Computing Machinery, New York, NY, USA, 93–100.
DOI:http://dx.doi.org/10.1145/1731903.1731924

[7] Yujun Cai, Liuhao Ge, Jianfei Cai, and Junsong Yuan.
2018. Weakly-supervised 3D Hand Pose Estimation
from Monocular RGB Images. In The European
Conference on Computer Vision (ECCV).

[8] Liwei Chan, Yi-Ling Chen, Chi-Hao Hsieh, Rong-Hao
Liang, and Bing-Yu Chen. 2015. CyclopsRing: Enabling
Whole-Hand and Context-Aware Interactions Through a
Fisheye Ring. In Proceedings of the 28th Annual ACM
Symposium on User Interface Software Technology
(UIST ’15). Association for Computing Machinery, New
York, NY, USA, 549–556. DOI:
http://dx.doi.org/10.1145/2807442.2807450

[9] Ke-Yu Chen, Kent Lyons, Sean White, and Shwetak
Patel. 2013a. UTrack: 3D Input Using Two Magnetic
Sensors. In Proceedings of the 26th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’13). Association for Computing Machinery, New
York, NY, USA, 237–244. DOI:
http://dx.doi.org/10.1145/2501988.2502035

[10] Ke-Yu Chen, Kent Lyons, Sean White, and Shwetak
Patel. 2013b. UTrack: 3D Input Using Two Magnetic
Sensors. In Proceedings of the 26th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’13). Association for Computing Machinery, New
York, NY, USA, 237–244. DOI:
http://dx.doi.org/10.1145/2501988.2502035

[11] Ke-Yu Chen, Shwetak N. Patel, and Sean Keller. 2016.
Finexus: Tracking Precise Motions of Multiple
Fingertips Using Magnetic Sensing. In Proceedings of
the 2016 CHI Conference on Human Factors in
Computing Systems (CHI ’16). Association for
Computing Machinery, New York, NY, USA,
1504–1514. DOI:
http://dx.doi.org/10.1145/2858036.2858125

[12] X. Chen, G. Wang, C. Zhang, T. Kim, and X. Ji. 2018.
SHPR-Net: Deep Semantic Hand Pose Regression From
Point Clouds. IEEE Access 6 (2018), 43425–43439.

[13] Xiang “Anthony” Chen, Julia Schwarz, Chris Harrison,
Jennifer Mankoff, and Scott E. Hudson. 2014.
Air+touch: Interweaving Touch in-Air Gestures. In
Proceedings of the 27th Annual ACM Symposium on
User Interface Software and Technology (UIST ’14).
Association for Computing Machinery, New York, NY,
USA, 519–525. DOI:
http://dx.doi.org/10.1145/2642918.2647392

[14] Ashley Colley and Jonna Häkkilä. 2014. Exploring
Finger Specific Touch Screen Interaction for Mobile
Phone User Interfaces. In Proceedings of the 26th
Australian Computer-Human Interaction Conference on
Designing Futures: The Future of Design (OzCHI ’14).
Association for Computing Machinery, New York, NY,
USA, 539–548. DOI:
http://dx.doi.org/10.1145/2686612.2686699

[15] Benjamin Coors, Alexandru Paul Condurache, and
Andreas Geiger. 2018. SphereNet: Learning Spherical
Representations for Detection and Classification in
Omnidirectional Images. In The European Conference
on Computer Vision (ECCV).

[16] 5DT DataGlove. 2020. 5DT Data Glove. Web. (1 May
2020). Retrieved May 1, 2020 from
https://5dt.com/5dt-data-glove-ultra/.

[17] Liuhao Ge, Zhou Ren, Yuncheng Li, Zehao Xue,
Yingying Wang, Jianfei Cai, and Junsong Yuan. 2019.
3D Hand Shape and Pose Estimation From a Single
RGB Image. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[18] Hyunjae Gil, DoYoung Lee, Seunggyu Im, and Ian
Oakley. 2017. TriTap: Identifying Finger Touches on
Smartwatches. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems
(CHI ’17). Association for Computing Machinery, New
York, NY, USA, 3879–3890. DOI:
http://dx.doi.org/10.1145/3025453.3025561

http://dx.doi.org/10.1145/2207676.2208576
http://dx.doi.org/10.1145/1731903.1731924
http://dx.doi.org/10.1145/2807442.2807450
http://dx.doi.org/10.1145/2501988.2502035
http://dx.doi.org/10.1145/2501988.2502035
http://dx.doi.org/10.1145/2858036.2858125
http://dx.doi.org/10.1145/2642918.2647392
http://dx.doi.org/10.1145/2686612.2686699
https://5dt.com/5dt-data-glove-ultra/
http://dx.doi.org/10.1145/3025453.3025561

[19] Oliver Glauser, Shihao Wu, Daniele Panozzo, Otmar
Hilliges, and Olga Sorkine-Hornung. 2019. Interactive
Hand Pose Estimation Using a Stretch-Sensing Soft
Glove. ACM Trans. Graph. 38, 4, Article Article 41
(July 2019), 15 pages. DOI:
http://dx.doi.org/10.1145/3306346.3322957

[20] Alix Goguey, Géry Casiez, Daniel Vogel, Fanny
Chevalier, Thomas Pietrzak, and Nicolas Roussel. 2014.
A Three-Step Interaction Pattern for Improving
Discoverability in Finger Identification Techniques. In
Proceedings of the Adjunct Publication of the 27th
Annual ACM Symposium on User Interface Software
and Technology (UIST’14 Adjunct). Association for
Computing Machinery, New York, NY, USA, 33–34.
DOI:http://dx.doi.org/10.1145/2658779.2659100

[21] Alix Goguey, Mathieu Nancel, Géry Casiez, and Daniel
Vogel. 2016. The Performance and Preference of
Different Fingers and Chords for Pointing, Dragging,
and Object Transformation. In Proceedings of the 2016
CHI Conference on Human Factors in Computing
Systems (CHI ’16). Association for Computing
Machinery, New York, NY, USA, 4250–4261. DOI:
http://dx.doi.org/10.1145/2858036.2858194

[22] Aakar Gupta, Muhammed Anwar, and Ravin
Balakrishnan. 2016. Porous Interfaces for Small Screen
Multitasking Using Finger Identification. In Proceedings
of the 29th Annual Symposium on User Interface
Software and Technology (UIST ’16). Association for
Computing Machinery, New York, NY, USA, 145–156.
DOI:http://dx.doi.org/10.1145/2984511.2984557

[23] Aakar Gupta and Ravin Balakrishnan. 2016. DualKey:
Miniature Screen Text Entry via Finger Identification. In
Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (CHI ’16). Association
for Computing Machinery, New York, NY, USA, 59–70.
DOI:http://dx.doi.org/10.1145/2858036.2858052

[24] Chris Harrison and Scott E. Hudson. 2009. Abracadabra:
Wireless, High-Precision, and Unpowered Finger Input
for Very Small Mobile Devices. In Proceedings of the
22nd Annual ACM Symposium on User Interface
Software and Technology (UIST ’09). Association for
Computing Machinery, New York, NY, USA, 121–124.
DOI:http://dx.doi.org/10.1145/1622176.1622199

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep Residual Learning for Image
Recognition. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[26] Ken Hinckley, Seongkook Heo, Michel Pahud, Christian
Holz, Hrvoje Benko, Abigail Sellen, Richard Banks,
Kenton O’Hara, Gavin Smyth, and William Buxton.
2016. Pre-Touch Sensing for Mobile Interaction. In
Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (CHI ’16). Association
for Computing Machinery, New York, NY, USA,
2869–2881. DOI:
http://dx.doi.org/10.1145/2858036.2858095

[27] Christian Holz and Patrick Baudisch. 2013. Fiberio: A
Touchscreen That Senses Fingerprints. In Proceedings of
the 26th Annual ACM Symposium on User Interface
Software and Technology (UIST ’13). Association for
Computing Machinery, New York, NY, USA, 41–50.
DOI:http://dx.doi.org/10.1145/2501988.2502021

[28] Y. Jang, I. Jeon, T. Kim, and W. Woo. 2017. Metaphoric
Hand Gestures for Orientation-Aware VR Object
Manipulation With an Egocentric Viewpoint. IEEE
Transactions on Human-Machine Systems 47, 1 (2017),
113–127.

[29] Insu Kim, Keunwoo Park, Youngwoo Yoon, and
Geehyuk Lee. 2018. Touch180: Finger Identification on
Mobile Touchscreen Using Fisheye Camera and
Convolutional Neural Network. In The 31st Annual ACM
Symposium on User Interface Software and Technology
Adjunct Proceedings (UIST ’18 Adjunct). Association
for Computing Machinery, New York, NY, USA, 29–32.
DOI:http://dx.doi.org/10.1145/3266037.3266091

[30] J. Kim, N. D. Thang, and T. Kim. 2009. 3-D hand
motion tracking and gesture recognition using a data
glove. In 2009 IEEE International Symposium on
Industrial Electronics. 1013–1018.

[31] Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014).

[32] Huy Viet Le, Sven Mayer, and Niels Henze. 2018.
InfiniTouch: Finger-Aware Interaction on Fully Touch
Sensitive Smartphones. In Proceedings of the 31st
Annual ACM Symposium on User Interface Software
and Technology (UIST ’18). Association for Computing
Machinery, New York, NY, USA, 779–792. DOI:
http://dx.doi.org/10.1145/3242587.3242605

[33] Mathieu Le Goc, Stuart Taylor, Shahram Izadi, and Cem
Keskin. 2014. A Low-Cost Transparent Electric Field
Sensor for 3d Interaction on Mobile Devices. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’14). Association
for Computing Machinery, New York, NY, USA,
3167–3170. DOI:
http://dx.doi.org/10.1145/2556288.2557331

[34] Kuo-Wei Lee, Shih-Hung Liu, Hwann-Tzong Chen, and
Koichi Ito. 2019. Silhouette-Net: 3D Hand Pose
Estimation from Silhouettes. (2019).

[35] Y. Lee, J. Jeong, J. Yun, W. Cho, and K. Yoon. 2019.
SpherePHD: Applying CNNs on a Spherical
PolyHeDron Representation of 360° Images. In 2019
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 9173–9181.

[36] S. Li. 2006. Monitoring Around a Vehicle by a Spherical
Image Sensor. IEEE Transactions on Intelligent
Transportation Systems 7, 4 (2006), 541–550.

http://dx.doi.org/10.1145/3306346.3322957
http://dx.doi.org/10.1145/2658779.2659100
http://dx.doi.org/10.1145/2858036.2858194
http://dx.doi.org/10.1145/2984511.2984557
http://dx.doi.org/10.1145/2858036.2858052
http://dx.doi.org/10.1145/1622176.1622199
http://dx.doi.org/10.1145/2858036.2858095
http://dx.doi.org/10.1145/2501988.2502021
http://dx.doi.org/10.1145/3266037.3266091
http://dx.doi.org/10.1145/3242587.3242605
http://dx.doi.org/10.1145/2556288.2557331

[37] Xuan Li, Chun-Ho Chen, and Yi-Pai Huang. 2016. 3D
interactive system based on vision computing of
direct-flective cameras. Journal of the Society for
Information Display 24, 8 (2016), 521–528. DOI:
http://dx.doi.org/10.1002/jsid.457

[38] Jaime Lien, Nicholas Gillian, M. Emre Karagozler,
Patrick Amihood, Carsten Schwesig, Erik Olson, Hakim
Raja, and Ivan Poupyrev. 2016. Soli: Ubiquitous
Gesture Sensing with Millimeter Wave Radar. ACM
Trans. Graph. 35, 4, Article Article 142 (July 2016), 19
pages. DOI:http://dx.doi.org/10.1145/2897824.2925953

[39] Hyunchul Lim, Jungmin Chung, Changhoon Oh,
SoHyun Park, Joonhwan Lee, and Bongwon Suh. 2018.
Touch+Finger: Extending Touch-Based User Interface
Capabilities with “Idle” Finger Gestures in the Air. In
Proceedings of the 31st Annual ACM Symposium on
User Interface Software and Technology (UIST ’18).
Association for Computing Machinery, New York, NY,
USA, 335–346. DOI:
http://dx.doi.org/10.1145/3242587.3242651

[40] W. Lu, Z. Tong, and J. Chu. 2016. Dynamic Hand
Gesture Recognition With Leap Motion Controller.
IEEE Signal Processing Letters 23, 9 (2016),
1188–1192.

[41] J. Malik, A. Elhayek, F. Nunnari, K. Varanasi, K.
Tamaddon, A. Heloir, and D. Stricker. 2018. DeepHPS:
End-to-end Estimation of 3D Hand Pose and Shape by
Learning from Synthetic Depth. In 2018 International
Conference on 3D Vision (3DV). 110–119.

[42] ManusVR. 2020. ManusVR Prime One. Web. (1 May
2020). Retrieved May 1, 2020 from
https://manus-vr.com/prime-one-gloves/.

[43] Damien Masson, Alix Goguey, Sylvain Malacria, and
Géry Casiez. 2017. WhichFingers: Identifying Fingers
on Touch Surfaces and Keyboards Using Vibration
Sensors. In Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’17). Association for Computing Machinery, New
York, NY, USA, 41–48. DOI:
http://dx.doi.org/10.1145/3126594.3126619

[44] Jess McIntosh, Paul Strohmeier, Jarrod Knibbe,
Sebastian Boring, and Kasper Hornbæk. 2019.
Magnetips: Combining Fingertip Tracking and Haptic
Feedback for Around-Device Interaction. In
Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems (CHI ’19). Association
for Computing Machinery, New York, NY, USA, Article
Paper 408, 12 pages. DOI:
http://dx.doi.org/10.1145/3290605.3300638

[45] Gyeongsik Moon, Ju Yong Chang, and Kyoung Mu Lee.
2018. V2V-PoseNet: Voxel-to-Voxel Prediction Network
for Accurate 3D Hand and Human Pose Estimation
From a Single Depth Map. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

[46] Franziska Mueller, Florian Bernard, Oleksandr
Sotnychenko, Dushyant Mehta, Srinath Sridhar, Dan

Casas, and Christian Theobalt. 2018. GANerated Hands
for Real-Time 3D Hand Tracking from Monocular RGB.
In Proceedings of Computer Vision and Pattern
Recognition (CVPR). 11. https:
//handtracker.mpi-inf.mpg.de/projects/GANeratedHands/

[47] Franziska Mueller, Micah Davis, Florian Bernard,
Oleksandr Sotnychenko, Mickeal Verschoor, Miguel A.
Otaduy, Dan Casas, and Christian Theobalt. 2019.
Real-time Pose and Shape Reconstruction of Two
Interacting Hands With a Single Depth Camera. ACM
Transactions on Graphics (TOG) 38, 4 (2019).

[48] Franziska Mueller, Dushyant Mehta, Oleksandr
Sotnychenko, Srinath Sridhar, Dan Casas, and Christian
Theobalt. 2017. Real-Time Hand Tracking Under
Occlusion From an Egocentric RGB-D Sensor. In The
IEEE International Conference on Computer Vision
(ICCV) Workshops.

[49] Sundar Murugappan, Vinayak, Niklas Elmqvist, and
Karthik Ramani. 2012. Extended Multitouch:
Recovering Touch Posture and Differentiating Users
Using a Depth Camera. In Proceedings of the 25th
Annual ACM Symposium on User Interface Software
and Technology (UIST ’12). Association for Computing
Machinery, New York, NY, USA, 487–496. DOI:
http://dx.doi.org/10.1145/2380116.2380177

[50] Rajalakshmi Nandakumar, Vikram Iyer, Desney Tan,
and Shyamnath Gollakota. 2016. FingerIO: Using
Active Sonar for Fine-Grained Finger Tracking. In
Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (CHI ’16). Association
for Computing Machinery, New York, NY, USA,
1515–1525. DOI:
http://dx.doi.org/10.1145/2858036.2858580

[51] Vassilis C. Nicodemou, Iason Oikonomidis, Georgios
Tzimiropoulos, and Antonis Argyros. 2018. Learning to
Infer the Depth Map of a Hand from its Color Image.
(2018).

[52] M. Oberweger and V. Lepetit. 2017. DeepPrior++:
Improving Fast and Accurate 3D Hand Pose Estimation.
In 2017 IEEE International Conference on Computer
Vision Workshops (ICCVW). 585–594.

[53] Markus Oberweger, Paul Wohlhart, and Vincent Lepetit.
2015. Hands Deep in Deep Learning for Hand Pose
Estimation. CoRR abs/1502.06807 (2015).
http://arxiv.org/abs/1502.06807

[54] Paschalis Panteleris and Antonis Argyros. 2017. Back to
RGB: 3D Tracking of Hands and Hand-Object
Interactions Based on Short-Baseline Stereo. In The
IEEE International Conference on Computer Vision
(ICCV) Workshops.

[55] P. Panteleris, I. Oikonomidis, and A. Argyros. 2018.
Using a Single RGB Frame for Real Time 3D Hand Pose
Estimation in the Wild. In 2018 IEEE Winter Conference
on Applications of Computer Vision (WACV). 436–445.

http://dx.doi.org/10.1002/jsid.457
http://dx.doi.org/10.1145/2897824.2925953
http://dx.doi.org/10.1145/3242587.3242651
https://manus-vr.com/prime-one-gloves/
http://dx.doi.org/10.1145/3126594.3126619
http://dx.doi.org/10.1145/3290605.3300638
https://handtracker.mpi-inf.mpg.de/projects/GANeratedHands/
https://handtracker.mpi-inf.mpg.de/projects/GANeratedHands/
http://dx.doi.org/10.1145/2380116.2380177
http://dx.doi.org/10.1145/2858036.2858580
http://arxiv.org/abs/1502.06807

[56] Keunwoo Park, Daehwa Kim, Seongkook Heo, and
Geehyuk Lee. 2020. MagTouch: Robust Finger
Identification for a Smartwatch Using a Magnet Ring
and a Built-in Magnetometer. In Proceedings of the
2020 CHI Conference on Human Factors in Computing
Systems (CHI ’20). Association for Computing
Machinery, New York, NY, USA, 1–13. DOI:
http://dx.doi.org/10.1145/3313831.3376234

[57] Leigh Ellen Potter, Jake Araullo, and Lewis Carter. 2013.
The Leap Motion Controller: A View on Sign Language.
In Proceedings of the 25th Australian Computer-Human
Interaction Conference: Augmentation, Application,
Innovation, Collaboration (OzCHI ’13). Association for
Computing Machinery, New York, NY, USA, 175–178.
DOI:http://dx.doi.org/10.1145/2541016.2541072

[58] Chen Qian, Xiao Sun, Yichen Wei, Xiaoou Tang, and
Jian Sun. 2014. Realtime and Robust Hand Tracking
from Depth. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[59] Zhou Ren, Junsong Yuan, and Zhengyou Zhang. 2011.
Robust Hand Gesture Recognition Based on
Finger-Earth Mover’s Distance with a Commodity
Depth Camera. In Proceedings of the 19th ACM
International Conference on Multimedia (MM ’11).
Association for Computing Machinery, New York, NY,
USA, 1093–1096. DOI:
http://dx.doi.org/10.1145/2072298.2071946

[60] D. Scaramuzza, A. Martinelli, and R. Siegwart. 2006. A
Toolbox for Easily Calibrating Omnidirectional
Cameras. In 2006 IEEE/RSJ International Conference
on Intelligent Robots and Systems. 5695–5701.

[61] Srinath Sridhar, Anders Markussen, Antti Oulasvirta,
Christian Theobalt, and Sebastian Boring. 2017.
WatchSense: On- and Above-Skin Input Sensing
through a Wearable Depth Sensor. In Proceedings of the
2017 CHI Conference on Human Factors in Computing
Systems (CHI ’17). Association for Computing
Machinery, New York, NY, USA, 3891–3902. DOI:
http://dx.doi.org/10.1145/3025453.3026005

[62] Yu-Chuan Su and Kristen Grauman. 2019. Kernel
Transformer Networks for Compact Spherical
Convolution. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[63] Bugra Tekin, Federica Bogo, and Marc Pollefeys. 2019.
H+O: Unified Egocentric Recognition of 3D
Hand-Object Poses and Interactions. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR).

[64] Jonathan Tompson, Murphy Stein, Yann Lecun, and Ken
Perlin. 2014. Real-Time Continuous Pose Recovery of
Human Hands Using Convolutional Networks. ACM
Trans. Graph. 33, 5, Article Article 169 (Sept. 2014), 10
pages. DOI:http://dx.doi.org/10.1145/2629500

[65] James Y Tung, Tea Lulic, Dave A Gonzalez, Johnathan
Tran, Clark R Dickerson, and Eric A Roy. 2015.
Evaluation of a portable markerless finger position
capture device: accuracy of the Leap Motion controller
in healthy adults. Physiological Measurement 36, 5 (apr
2015), 1025–1035. DOI:
http://dx.doi.org/10.1088/0967-3334/36/5/1025

[66] Pier Paolo Valentini and Eugenio Pezzuti. 2017.
Accuracy in fingertip tracking using Leap Motion
Controller for interactive virtual applications.
International Journal on Interactive Design and
Manufacturing (IJIDeM) 11, 3 (2017), 641–650.

[67] Chengde Wan, Thomas Probst, Luc Van Gool, and
Angela Yao. 2019. Self-Supervised 3D Hand Pose
Estimation Through Training by Fitting. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR).

[68] Jingtao Wang and John Canny. 2004. FingerSense:
Augmenting Expressiveness to Physical Pushing Button
by Fingertip Identification. In CHI ’04 Extended
Abstracts on Human Factors in Computing Systems
(CHI EA ’04). Association for Computing Machinery,
New York, NY, USA, 1267–1270. DOI:
http://dx.doi.org/10.1145/985921.986040

[69] Saiwen Wang, Jie Song, Jaime Lien, Ivan Poupyrev, and
Otmar Hilliges. 2016. Interacting with Soli: Exploring
Fine-Grained Dynamic Gesture Recognition in the
Radio-Frequency Spectrum. In Proceedings of the 29th
Annual Symposium on User Interface Software and
Technology (UIST ’16). Association for Computing
Machinery, New York, NY, USA, 851–860. DOI:
http://dx.doi.org/10.1145/2984511.2984565

[70] Wenbin Wu, Chenyang Li, Zhuo Cheng, Xin Zhang, and
Lianwen Jin. 2017. YOLSE: Egocentric Fingertip
Detection From Single RGB Images. In The IEEE
International Conference on Computer Vision (ICCV)
Workshops.

[71] W. Xu, A. Chatterjee, M. Zollhöfer, H. Rhodin, P. Fua,
H. Seidel, and C. Theobalt. 2019. Mo2Cap2: Real-time
Mobile 3D Motion Capture with a Cap-mounted Fisheye
Camera. IEEE Transactions on Visualization and
Computer Graphics 25, 5 (2019), 2093–2101.

[72] Linlin Yang and Angela Yao. 2019. Disentangling
Latent Hands for Image Synthesis and Pose Estimation.
In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

[73] Xing-Dong Yang, Khalad Hasan, Neil Bruce, and
Pourang Irani. 2013. Surround-See: Enabling Peripheral
Vision on Smartphones during Active Use. In
Proceedings of the 26th Annual ACM Symposium on
User Interface Software and Technology (UIST ’13).
Association for Computing Machinery, New York, NY,
USA, 291–300. DOI:
http://dx.doi.org/10.1145/2501988.2502049

http://dx.doi.org/10.1145/3313831.3376234
http://dx.doi.org/10.1145/2541016.2541072
http://dx.doi.org/10.1145/2072298.2071946
http://dx.doi.org/10.1145/3025453.3026005
http://dx.doi.org/10.1145/2629500
http://dx.doi.org/10.1088/0967-3334/36/5/1025
http://dx.doi.org/10.1145/985921.986040
http://dx.doi.org/10.1145/2984511.2984565
http://dx.doi.org/10.1145/2501988.2502049

[74] Qi Ye and Tae-Kyun Kim. 2018. Occlusion-Aware Hand
Pose Estimation Using Hierarchical Mixture Density
Network. In Computer Vision – ECCV 2018, Vittorio
Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair
Weiss (Eds.). Springer International Publishing, Cham,
817–834.

[75] Chun Yu, Xiaoying Wei, Shubh Vachher, Yue Qin, Chen
Liang, Yueting Weng, Yizheng Gu, and Yuanchun Shi.
2019. HandSee: Enabling Full Hand Interaction on
Smartphone with Front Camera-Based Stereo Vision. In
Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems (CHI ’19). Association
for Computing Machinery, New York, NY, USA, Article
Paper 705, 13 pages. DOI:
http://dx.doi.org/10.1145/3290605.3300935

[76] Shanxin Yuan, Qi Ye, Bjorn Stenger, Siddhant Jain, and
Tae-Kyun Kim. 2017. BigHand2.2M Benchmark: Hand
Pose Dataset and State of the Art Analysis. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR).

[77] Sangki Yun, Yi-Chao Chen, Huihuang Zheng, Lili Qiu,
and Wenguang Mao. 2017. Strata: Fine-Grained
Acoustic-Based Device-Free Tracking. In Proceedings
of the 15th Annual International Conference on Mobile
Systems, Applications, and Services (MobiSys ’17).
Association for Computing Machinery, New York, NY,

USA, 15–28. DOI:
http://dx.doi.org/10.1145/3081333.3081356

[78] X. Zhang, Q. Li, H. Mo, W. Zhang, and W. Zheng. 2019.
End-to-End Hand Mesh Recovery From a Monocular
RGB Image. In 2019 IEEE/CVF International
Conference on Computer Vision (ICCV). 2354–2364.

[79] Jingjie Zheng and Daniel Vogel. 2016. Finger-Aware
Shortcuts. In Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems (CHI ’16).
Association for Computing Machinery, New York, NY,
USA, 4274–4285. DOI:
http://dx.doi.org/10.1145/2858036.2858355

[80] Yidan Zhou, Jian Lu, Kuo Du, Xiangbo Lin, Yi Sun, and
Xiaohong Ma. 2018. HBE: Hand Branch Ensemble
Network for Real-time 3D Hand Pose Estimation. In
The European Conference on Computer Vision (ECCV).

[81] Christian Zimmermann and Thomas Brox. 2017.
Learning to Estimate 3D Hand Pose From Single RGB
Images. In The IEEE International Conference on
Computer Vision (ICCV).

[82] Christian Zimmermann, Duygu Ceylan, Jimei Yang,
Bryan Russell, Max Argus, and Thomas Brox. 2019.
FreiHAND: A Dataset for Markerless Capture of Hand
Pose and Shape From Single RGB Images. In The IEEE
International Conference on Computer Vision (ICCV).

http://dx.doi.org/10.1145/3290605.3300935
http://dx.doi.org/10.1145/3081333.3081356
http://dx.doi.org/10.1145/2858036.2858355

	Introduction
	Related Work
	Near-Surface Finger Tracking
	3D Hand Pose Estimation Using a Camera
	Mid-Air Interaction Technology
	Finger Identification Technology

	Hardware Configuration: Fisheyed Surface
	DeepFisheye Hand Dataset
	DeepFisheye Synthetic Dataset
	DeepFisheye Real Dataset

	DeepFisheye Pipeline
	Preprocessing
	DeepFisheye Network
	Training

	Network Verification: Ablation Study
	Interaction Element Classifiers
	Contact Finger Classifier
	Hand Posture Classifier
	Pilot Test

	User Test
	Data Collection
	Offline Evaluation
	Discussion

	Example Scenarios With Interaction Elements
	Limitations and Future Work
	Conclusion
	Acknowledgments
	References

